Modelling Stochastic Nondeterministic Systems: The challenge of continuous measures

Roberto Segala University of Verona

Why Stochastic Systems?

- Distributed algorithms
 - Consensus
 - ... the scheduler is adversarial
 - Leader election
- Security
 - Randomized protocols
 - ... but users are unpredictable
 - Indistinguishability
- Embedded systems
 - Environment may be stochastic
 - ... but distributions may be unknown
 - Perturbations may be stochastic

Randomization Difficult

- Intuition often fails
 - Many wrong protocols
- Interplay probability / nondeterminism
 - Independence broken
- Probability gives observational power
 - Language inclusion is branching
- Measurability
 - When can we study probabilities
- Compositional reasoning
 - Need substitutive relations
 - Need projection theorems

Models with Discrete Measures

- Markov Processes
- Markov Decision Processes [Bel57]
 - Probabilistic Automata [Rab63]
 - Reactive model [GSST90]
- Strictly Alternating Automata [Han91]
- Alternating Automata [Var85,PLS02]
- Probabilistic Automata [Seg95]
 - Extend all models above
- Probabilistic Nondeterministic Systems [BA95]
- Concurrent Probabilistic Systems [BK98]
- Probabilistic Reactive Modules [AHJ01]

Probabilistic Automata

Example: Probabilistic Automata

What is the probability of beeping?

Example: Probabilistic Execution

Cones and Measures

- Cone of α
 - Set of executions with prefix $\boldsymbol{\alpha}$
 - Represent event " α occurs"
- · Measure of a cone
 - Product edges of α

Thm. The measure over cones extends uniquely to a measure over the σ -field generated by cones

Schedulers and Probabilistic Executions

Scheduler o

$$\sigma:exec*(A) \rightarrow SubDisc(D)$$

$$\sigma(\alpha)((q,a,\mu)) > 0$$
 implies $q = lstate(\alpha)$

Probabilistic execution:

given start state r, measure $\mu_{\sigma,r}$ where

$$\mu_{\sigma,r}(C_r) = 1$$

$$\mu_{\sigma,r}(C_{\alpha aq}) = \mu_{\sigma,r}(C_{\alpha}) \rho$$

$$\rho = \sum_{(s,a,v) \in D} \sigma(\alpha)((s,a,v)) v(q)$$

Examples of Events

- Eventually action a occurs
 - Union of cones where action a occurs once
- Action a occurs at least n times
 - Union of cones where action a occurs n times
- Action a occurs at most n times
 - Complement of action a occurs at least n+1 times
- Action a occurs exactly n times
 - Intersection of previous two events
- · Action a occurs infinitely many times
 - Intersection of action a occurs at least n times for all n
- Execution α occurs and nothing is scheduled after
 - Set consisting of α only
 - C_{α} intersected complement of cones that extend α

Composition

Projections

The projection function is measurable

 $\pi(\mu)$: image measure under π of μ

Theorem

If μ is a probabilistic execution of $A_1 \| \, A_2$ then

 $\pi_i(\mu)$ is a probabilistic execution of A_i

Example: Projection

Projection onto right component

Note that the scheduler is randomized

Use of Projections

Let μ start in a state s of F_0 .

Hyerarchical Verification

Alpine Verification Meeting

Lausanne, October 6 2005

Trace Distributions

The trace function is measurable

Trace distribution of μ

 $tdist(\mu)$: image measure under trace of μ

Trace distribution inclusion preorder

 $A_1 \leq_{\mathrm{TD}} A_2$ iff $tdists(A_1) \subseteq tdists(A_2)$

Trace Distribution Inclusion is not Compositional

$$(s_0, c_0) \xrightarrow{a} (s_1, c_0) \xrightarrow{b} (s_1, c_2) \xrightarrow{b} (s_2, c_3)$$

$$(s_1, c_2) \xrightarrow{f} (s_1, c_4) \xrightarrow{c} (s_3, c_4)$$

How to Get Compositionality

- Restrict the power of composition
 - Probabilistic reactive modules [AHJ01]
 - Switched probabilistic I/O automata [CLSV04]
- Trace Distribution Precongruence
 - Coarsest precongruence included in preorder
 - Alternative characterizations
 - Principal context [Seg95]
 - Testing [Seg96]
 - Forward simulations [LSV03]

Models with Continuous Measures

- Continuous Time Markov Chains
 - Markov chains with exponential time delays
- Generalized Stochastic Petri Nets [MBC84]
 - Petri Nets extended with exponential delays
- Stochastic Transition Systems [Alf98]
 - GSPNs with nondeterminism
- Labelled Markov Processes [DP97]
 - Markov chains with labels and continuous measures
- Concurrent Timed Probabilistic Graphs [KNNS02]
 - Timed automata with arbitrary measures
- Continuous Markov Decision Processes [BHHK04]
- Stochastic Transition Systems [CSKN05]
 - LMP's with nondeterminism

Problems with Measurability

- Not all sets can be measurable
 - Need to fix a σ -field
- Not all schedulers are nice

- Let X be a non-measurable subset of Ω
- Schedule b from X and c from Ω -X
- Solution: restrict to measurable schedulers [CSKN05]
- · Not all automata may be nice
 - Enable b only from X and c only from Ω -X
 - Solution: impose measurable transition relations [AW05]

Stochastic Transition Systems

$$A = ((Q,F_Q) \ , \ q_0 \ , \ (L,F_L) \ , \ D)$$
 Transition relation
$$D \subseteq Q \times (E \cup H) \times D(Q,F_Q)$$
 Actions with σ -field Initial state: $q_0 \in Q$ States with σ -field

What Next?

- More general model
 - Stochastic hybrid systems
 - · Nondeternimism, continuous evolutions
 - Stochastic differential equations
- Understand relations
 - Substitutivity
 - Aproximate simulation relations (metrics)
 - Exact values do not seem to matter
 - Useful for cryptographyc protocols
- Understand logics
 - CSL, PCTL
- Verification
 - Aproximate reasoning
 - Model checking
- Case studies
 - 333

