Models and Theory of Computation (MTC)
EPFL

Dirk Beyer, Jasmin Fisher, Nir Piterman

Simon Kramer: Logic for cryptography
Marc Schaub: Models for biological systems
Vasu Singh: Software interface derivation
Gregory Theoduloz: Combining model checking and program analysis

Arindam Chakrabarti: Web service interfaces
Krishnendu Chatterjee: Stochastic games
Slobodan Matic: Time-triggered programming
Vinayak Prabhu: Robust hybrid systems
Model Checking: From Graphs to Games

Tom Henzinger
EPFL
Graph Models of Systems

vertices = states
edges = transitions
paths = behaviors
Game Models of Systems

vertices = states
edges = transitions
paths = behaviors
players = components
Game Models of Systems

FAIRNESS: ω-automaton

INDEPENDENT COMPONENTS: game

PROBABILITIES: Markov decision process

ω-regular game

stochastic game
Graphs vs. Games
Game Models enable

- synthesis [Church, Rabin, Ramadge/Wonham, Pnueli/Rosner et al.]
- receptiveness [Dill, Abadi/Lamport]
- semantics of interaction [Abramsky]
- reasoning about adversarial behavior
- interface-based design
- modular reasoning [Kupferman/Vardi et al.]
- early error detection [deAlfaro/H/Mang]
- model-based testing [Gurevich et al.]
- scheduling [Sifakis et al.]
- reasoning about security [Raskin et al.]
- etc.
Game Models

Always about open systems:

- players = processes / components / agents
- input vs. output
- demonic vs. angelic nondeterminism
Game Models

Always about open systems:
- players = processes / components / agents
- input vs. output
- demonic vs. angelic nondeterminism

1. Output games: input demonic (adversarial)
2. Input games: output demonic
Output Games

P1:

init $x := 0$
l

loop

choice

| $x := x + 1 \mod 2$
| $x := 0$

end choice

d

S1: $\square (x \geq y)$

P2:

init $y := 0$
l

loop

choice

| $y := x$
| $y := x + 1 \mod 2$

end choice

d

S2: $\square \text{even}(y)$
Graph Questions

∀ □ (x ≥ y)

∃ □ (x ≥ y)
Graph Questions

\[\forall \square (x \geq y) \]

\[\exists \square (x \geq y) \]
Zero-Sum Game Questions

\((\langle P1 \rangle) \square (x \geq y)\)

\((\langle P2 \rangle) \square \text{even}(y)\)
Zero-Sum Game Questions

X \(\langle\langle P1\rangle\rangle \Box (x \geq y)\)
✓ \(\langle\langle P2\rangle\rangle \Box \text{even}(y)\)

ATL [Alur/H/Kupferman]
Nonzero-Sum Game Questions

\[\langle P1 \rangle \Box (x \geq y) \]

\[\otimes \]

\[\langle P2 \rangle \Box \text{ even}(y) \]
Nonzero-Sum Game Questions

\[\langle \langle P1 \rangle \rangle \square (x \geq y) \]

\[\langle \langle P2 \rangle \rangle \square \text{even}(y) \]

Secure equilibrium

[Chatterjee/H/Jurdzinski]
Classical Notion of Rationality

Nash equilibrium: none of the players gains by deviation.

(1, 0) (3, 1)
(4, 2) (3, 2)
Refined Notion of Rationality

Nash equilibrium: none of the players gains by deviation.

Secure equilibrium: none hurts the opponent by deviation.

\[
\begin{array}{cc}
3,1 & 1,0 \\
3,2 & 4,2 \\
\end{array}
\]

(row, column)
Secure Equilibrium

- Natural notion of rationality for multi-component systems:
 - First, a component tries to meet its specification.
 - Second, a component may obstruct the other components.

- A secure equilibrium is a contract:
 if one player deviates to lower the other player’s payoff, then her own payoff decreases as well, and vice versa.
Theorem
Generalization of Determinacy

Zero-sum games: $S_1 = -S_2$

Nonzero-sum games: S_1, S_2
Game Models

Always about open systems:
- players = processes / components / agents
- input vs. output
- demonic vs. angelic nondeterminism

1. Output games: input demonic (adversarial)
2. Input games: output demonic
Input Games

Control objective: □ ¬ z
Input Games

Control objective:

\[\square \neg z \]
Input Games

Control objective:
\[\square \neg z \]
Input Games

[Ramadge/Wonham et al.]
Input Games

Not input enabling
Input Games

Environment avoids deadlock

= Input assumption

Interface automata [deAlfaro/H]
Input Games

Legal environment
Input Games

Illegal environment
Interface Compatibility

File server

open
close
read
data

open?
close?
read?
data!
Interface Compatibility

Good client

File server

open!

close!
data?

read!

open

close

read

data

open?
close?
data!
Interface Compatibility

Bad client

File server

open!
open!
open!
open!

open?
close
read
read?
data!
data!

close?
open?
Incremental Design
Incremental Design
Incremental Design
Incremental Design

Input assumption

Input assumption
Incremental Design

Propagated weakest input assumption
Input Assumption Propagation
Input Assumption Propagation
Input Assumption Propagation
Two interfaces are compatible if they can be used together in some environment.
The Composite Interface
Refinement

Every legal environment should be a legal environment of the refined process.
Every legal environment should be a legal environment of the refined process.
Every legal environment should be a legal environment of the refined process.
Refinement

Every legal environment should be a legal environment of the refined process.
Refinement

Every legal environment should be a legal environment of the refined process.
Interface Refinement:
I/O Alternating Simulation

\[
A' \leq A
\]

iff

for all outputs o, if \(A' - o! -> B' \), then there exists B such that \(A - o! -> B \) and \(B' \leq B \).
Interface Refinement: I/O Alternating Simulation

\[A' \leq A \]

iff

1. for all inputs \(i \), if \(A -i?\rightarrow B \), then there exists \(B' \) such that \(A' -i?\rightarrow B' \) and \(B' \leq B \),

and

2. for all outputs \(o \), if \(A' -o!\rightarrow B' \), then there exists \(B \) such that \(A -o!\rightarrow B \) and \(B' \leq B \).
Interface Refinement:
I/O Alternating Simulation

\[A' \leq A \]

iff

1. for all inputs i, if \(A -i?-> B \), then there exists \(B' \) such that \(A' -i?-> B' \) and \(B' \leq B \),

and

2. for all outputs o, if \(A' -o!-> B' \), then there exists \(B \) such that \(A -o!-> B \) and \(B' \leq B \).

Every environment (i.e., input strategy that avoids deadlock) for \(A \) is an environment for \(A' \) [Alur/H/Kupferman/Vardi].
The Principle of Independent Implementability

If A and B is are compatible and $A' \leq A$ and $B' \leq B$, then A' and B' are compatible and $A'||B' \leq A||B$.

$A' \leq A$... A' refines / implements A
The Principle of Independent Implementability

If A and B is are compatible and \(A' \leq A \) and \(B' \leq B \), then \(A' \text{ and } B' \text{ are compatible} \) and \(A'||B' \leq A||B \).

\(A' \leq A \) … \(A' \) refines / implements A

This is a theorem if

-A, B, A’, B’ are two-player games Input vs. Output
-two games are compatible if player Input has a winning strategy in the composite game
Interface-based Design
Interface-based Design
Interface-based Design
Interface-based Design
Interface-based Design
Summary

There are many models of computation (e.g. pushdown, timed, stochastic) and many models of interaction (e.g. synchronous).

Similarly, there are many variants of games (e.g. concurrent vs. turn-based moves; pure vs. randomized strategies).
Summary

There are many models of computation (e.g. pushdown, timed, stochastic) and many models of interaction (e.g. synchronous).

Similarly, there are many variants of games (e.g. concurrent vs. turn-based moves; pure vs. randomized strategies).

The technical details are different, but to ask and answer the kind of questions we discussed, the only important feature of a model is the presence of multiple players.
References

Interface Automata: de Alfaro, H FSE 2001
Secure Equilibria: Chatterjee, H, Jurdzinski LICS 2004