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Initial motivation

Model checkers of the first generation (SPIN,SMV,Murphi, . . . ) only work for
flat finite-state systems.

Recursive procedural programs may be infinite-state,
even if all variables have a finite range (unbounded call stack).

Flattening of non-recursive procedural programs using inlining
may cause an exponential blow-up in the size of the program.

Our (initial) setup:

• Goal: Design model checkers that work directly on the procedural
representation.

• Approach: Base as much as possible on automata theory.
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Pushdown systems

A pushdown system (PDS) is a triple (P,Γ, δ), where

• P is a finite set of control locations

• Γ is a finite stack alphabet

• δ ⊆ (P × Γ)× (P × Γ∗) is a finite set of rules.

A configuration is a pair pα, where p ∈ P, α ∈ Γ∗

Semantics: A (possibly infinite) transition system with configurations as states
and transitions given by

If pX ↪→ qα ∈ δ then pXβ −→ qαβ for every β ∈ Γ∗
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From programs to pushdown systems

State of a procedural program: ( g, (n, l), (n1, l1) . . . (nk , lk) ), where

• g is a valuation of the global variables,

• n is the value of the program pointer,

• l is a valuation of local variables of the current active procedure,

• ni is a return address, and

• li is a saved valuation of the local variables of the procedures on the call stack

Modelled as a configuration pXY1 . . . Yk where

p = g X = (n, l) Yi = (ni , li)
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Correspondence between program statements and rules

procedure call pX ↪→ qYX

return pX ↪→ qε

statement pX ↪→ qY
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From the beginnings to MOPED

Formal model and first complexity results (1996 – 1997)

• Fundamental problem: manipulate infinite sets of configurations

• Key insight: use finite automata as data structure

Finding efficient algorithms (1999 – 2000)

• Efficient algorithms for computing post∗ (and pre∗) of a regular set of
configurations

• Polynomial algorithm in the size of the PDS for LTL model-checking
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Dealing with the state explosion problem (2001 – 2002)

• Symbolic pushdown systems as modelling language

• Basic idea: use BDDs to compactly represent sets of PDS rules that differ
only in their ‘data part’

〈g1, . . . gk〉 (n1, 〈v1, . . . , vl〉) ↪−→ 〈g′1, . . . , g′l 〉 (n2, 〈v ′1, . . . , v ′k〉) (n3, 〈v ′′1, . . . , v ′′k 〉)
(g1 > v2 ∧ v ′2 = v1 ∧ v ′′1 = v2 ∧ . . .)

MOPED (Stefan Schwoon): A model checker for pushdown systems (2002)
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MOPED’s input language
define DEFAULT INT BITS N //N and M are parameters
int a[1,M];

module void qs (int left, int right) {
int lo, hi, piv;

if :: (left >= right) -> return;
:: else -> lo = left, hi = right, piv = a[right];

fi

do :: (lo > hi) -> break;
:: ((lo <= hi) && (a[hi] > piv)) -> hi = hi - 1;
:: ((lo <= hi) && (a[hi] <= piv)) ->

a[lo] = a[hi]; a[hi] = a[lo]; lo = lo + 1;
od

qs(left, hi); qs(lo, right);
}

module void main () {
qs(1,M);
if :: (E i (1,M-1) a[i] > a[i+1]) -> error: goto error;

:: else -> ok: goto ok;
fi

}
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Extending MOPED (2003-2005)

Theory and algorithms:

• Weighted Pushdown Systems

• Concurrent (Dynamic) Pushdown Systems

• Probabilistic Pushdown Systems

• CEGAR for Symbolic Pushdown Systems

Applications:

• Model-checking/symbolic testing of Java

• Program analysis

• Authorization problems
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Weighted Pushdown Systems

Attach weights to the rules of a pushdown system

Weight of a path: sum of the weights of the rules used

Weight of a bundle of paths: minimum of the path weights

Basic result (SCP ’05): extension of the post∗-algorithm to obtain for each
reachable state the length of a shortest path leading to the state.

Generalization: + / min → arbitrary semiring

shortest path → ‘summary’ of all paths

Implemented for abstract semirings
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Concurrent (Dynamic) Pushdown Systems

Goal: formal models for procedural multithreaded programs

Synchronous communication (POPL’03)

• Model: pushdown systems communicating through rendezvous

• Problem: deciding properties of the intersection of context-free languages

• Main result: commutative abstractions are decidable

Asynchronous communication (FSTTCS’05)

• Follow-up to work by Qadeer and Rehof in TACAS ’05

• Model: pushdown systems communicating through shared variables

• Approach: compute underapproximations of the reachable states (split runs
into ‘contexts’ during which only one thread writes to shared variables)

• Result: extension of the basic algorithm to compute the reachable states for
up to n contexts
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CEGAR for symbolic pushdown systems

Still unpublished

Only variables with a finite range

Modification of the basic post∗-algorithm to find dags of counterexamples

BDD-based Craig-interpolation:

• Weakest and strongest interpolants naturally computed using quantifier
elimination

• Can be computed while determining if counterexample is spurious
(connection to Hoare proofs)

• New ‘good’ interpolants: conciliated interpolants

Currently working on: Finding suitable applications!

NDD-based Craig-interpolation
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Probabilistic Pushdown Systems

Attach probabilities to pushdown rules

Interesting class of infinite-state Markov chains

Model-checking both for linear and branching-time (LICS’04)

• Will the program terminate with probability 1?

• Is the probability that a request never gets granted below 0.01?

Expectations and variances of service times (LICS’05, FOCS’05)

• What is the probability that the average service time of a run is between 30

and 32 seconds?

Look also for work by Etessami and Yannakakis

Current work: Approximation algorithms
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Model-checking/symbolic testing of Java

Goal: create a Java front-end for Moped

Translation starts at bytecode level; captures a large subset of Java’s capabilities

Restrictions:
• variables limited to finite range
• finite heap size
• some advanced language features
→ symbolic testing for a large set of inputs simultaneously

Implementation: JMoped (TACAS’05)

Currently working on:
• Combine with CEGAR approach
• Testing environment with a GUI
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Program analysis

Idea: Weighted PDS yield new unified framework for data-flow analysis problems
(SAS’03, SCP’05)

Abstract semirings can encode many different data-flow problems
(from bitvector problems to affine-relation analysis).

pre∗/post∗ primitives compute data-flow values for each configuration

Previous methods “merge” values at a program point regardless of calling
context; WPDS allow to make queries w.r.t. specific stack configurations.

Can compute an example path (or set of paths) that “explains” the computed
data-flow values (contribution to program understanding).

Implementation: WPDS library (used in Codesurfer )
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Authorization problems

PDS can be used to model the SPKI/SDSI authorization framework
(Jha/Reps 2002).

SPKI/SDSI:

Principals =̂ Public Keys =̂ PDS control locations

“Extended names” provide a hierarchical name space, e.g.

KAlice friends Kuniversity institutes staff

Name space hierarchy =̂ stack symbols

Authorization certificates =̂ pushdown rules, e.g.

Klibrary � ↪→ Kuniversity institutes staff �

pre∗/post∗ primitives compute the set of authorized principals
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Weights used to express additional properties in certificates: (CSFW’03)

Detailed access rights (read/write etc; powerset domain)
“Find me a set of certificates giving me as many rights as possible.”

Privacy/sensitivity information
“Prove my access rights while trying not to reveal unnecessary information.”

Recency/Validity
“Prove my access rights with recent certificates/certs that are valid as long as possible.”

Distributed certificate chain discovery (search distributed among several
certificate servers)

Current work: Embedding into Kerberos services

Generalization to multiple authorization
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