Problem 3

There are \(n \geq 1 \) asynchronous processes, each with a private memory of \(p \) bits. The processes can communicate only through reading and writing a shared memory of \(s \) bits. Computation proceeds in a sequence of atomic steps: in each step, first a scheduler chooses one of the processes; then the chosen process reads and modifies his private state and the shared state. A *fair* scheduler does not neglect any process forever; a *bounded fair* scheduler does not neglect any process for more than \(b \) steps, for some integer bound \(b \geq n \).

You need to design a protocol that allows the processes to elect a leader. In addition to the private memory of \(p \) bits, each process \(i \) has a read-only variable \(F_i \) and a write-only variable \(V_i \). The variable \(F_i \in \{1, \ldots, n\} \) represents the initial favorite of process \(i \) for leader. The variable \(V_i \in \{1, \ldots, n\} \) represents the final vote of process \(i \) for leader. In addition to the shared memory of \(s \) bits, there is a shared write-only bit \(T \), which is initially 0. Setting \(T \) to 1 signals the completion of the election process. The requirements on the protocol are as follows:

1. Leader election must be unanimous, that is, when \(T = 1 \), then \(V_i = V_j \) for all \(1 \leq i, j \leq n \).
2. One of the initial favorites must be elected leader, that is, when \(T = 1 \), then \(|\{j \mid F_j = V_1\}| \geq |\{j \mid F_j = i\}| \) for all \(1 \leq i \leq n \).
3. Leader election must terminate, that is, if the scheduler is fair, then \(T = 1 \) within a finite number of steps.

Each process can initialize his private memory (with the exception of the \(F_i \)'s), but the initial state of the shared memory (with the exception of \(T \)) is unknown. Each process knows the number \(n \) of processes, but is oblivious to the choices made by the scheduler.

Questions:

1. What is the smallest number \(s \) of shared bits necessary to solve the problem?
2. Given a solution, for a scheduler with bound \(b \), let \(t_b \) be the maximal number of steps till termination (\(T = 1 \)), and let \(s \cdot t_b \) be the cost of the solution. What is the least cost necessary to solve the problem for bounded schedulers with unknown bound \(b \)?