
Problem Solving in Computer Science

Fall 2008

Scribe notes

Romain Rossier

École Polytechnique Féderale de Lausanne (EPFL), Switzerland

November 17, 2008

1 Ideas for project 3

Groups presented two main ideas for concurrent insertion in a binary decision
diagram. The first one (Algorithm 1) is to encapsulate the vertex creation into
a JAVA synchronized section. This way will ensure that only one thread can
execute this section. The second one (Algorithm 2) is to use JAVA concurrent
hashmap. All nodes of the tree are hashed. The insertion of a new node is made
by making use of the map.putIfAbsent() function.

Algorithm 1 Function makeVertex
Ensure: The concurrent insertion of vertex B
Require: A BDD and a vertex B
1: synchronized {Ensure that only one thread can execute this sub-section}
2: if B isMember of the pool then
3: return it
4: else
5: insertToPool(B)
6: end if
7: return pool

Algorithm 2 Function insertNode
Ensure: The concurrent insertion of a node B
Require: A conccurent hashmap map and a node B
1: map.putIfAbsent(B) {ensure that only one thread can insert the node B in

the hashmap map}
2: return map

1



thread 0 thread 1 thread n

swap(2)

swap(2)

swap(3)

compareBDD(e1,e2)

compareBDD(e1,e2)

compareBDD(e1,e3)

compareBDD(e2,e3)

Figure 1: concurrent execution schedule

2 Structures for testing our implementation

Our implementation must provide at least two functions. The first function
is a swap function. This function interchange the variable xi with the next
subsequence variable in the order of variables. For instance, considering the
variable order x1 x2 x4 x5 x3, swap(2) produces the following ordering result
x1 x4 x2 x5 x3. In practice, the swap function is used to reduce size of BDD.
The second function (Algorithm 3) must compare two boolean expression by
returning the size of BDD generated if both boolean expressions are equivalent.
Otherwise, it must return a 0. The swap function is executed on a single thread
only to respect the order of swap. The function compareBDD can be executed
on the others threads. Figure 1 illustrates one possible concurrent execution.

Algorithm 3 Function compareBDD
Ensure: The size of the BDD
Require: Two boolean expressions e1 and e2

1: if e1 is equivalent to e2 then
2: return The size of the BDD construct using expression e1

3: else
4: return 0
5: end if

3 Performance issues of implementation

Two performance issues of the implementation

• As little synchronization as possible

2



• Save as much BDD structure as possible across swaps

3


