
Problem 1: Definitions

Simple Stochastic Games

A simple stochastic game (SSG) G = 〈Smax , Smin , Sran , l, r〉 consists of the
following components:

• A set Smax of max states ; a set Smin of min states ; and a set Sran of
random states. The three sets Smax , Smin , and Sran are pairwise disjoint.
We write S = Smax ∪ Smin ∪ Sran and S+ = S ∪ {tmax , tmin}, where
tmax , tmin 6∈ S are special target states.

• Two successor functions l: S → S+ and r: S → S+.

A state s ∈ S is deterministic if l(s) = r(s). The SSG G is a min MDP

if all states in Smax are deterministic; a max MDP, if all states in Smin are
deterministic; and a Markov chain, if all states in Smax ∪Smin are deterministic.

Plays

The game is played between two players, a max player and a min player. Initially
a token is placed on one of the states. If the token is on a max state, then the
max player moves it to one of the two successor states; if the token is on a min
state, then the min player moves it to one of the two successor states; and if
the token is on a random state, then it is moved with probability 1/2 to each
of the two successor states. This process is repeated until the token visits a
target state. If the token visits the target tmax , then the max player wins;
if the token visits tmin , then the min player wins; and if the game is played
forever without the token visiting a target, then neither player wins. Formally,
a winning play of the SSG G is a finite sequence ω = 〈s0, s1, . . . , sk〉 of states
(k ≥ 0) such that (1) for all 0 ≤ i < k, we have si ∈ S and si+1 ∈ {l(si), r(si)},
and (2) sk ∈ {tmax , tmin}. The play ω is max winning if sk = tmax ; otherwise it
is min winning. The probability of the play is Pr(ω) = 1/2m, where m = |{0 ≤
i < k | si ∈ Sran}| is the number of random states that occur in ω.

Strategies

If a state is visited twice when playing the game, a player may choose different
successor states. It can be shown, however, that this is never to the player’s
benefit. Hence it suffices to consider positional strategies for both players, which
prescribe, for each state, whether the player chooses the left (l) or right (r)
successor state. Consider an SSG G = 〈Smax , Smin , Sran , l, r〉. A positional max

strategy for G is a function σ: Smax → {L, R}, and a positional min strategy is a
function π: Smin → {L, R}. We write Σ for the set of positional max strategies,
and Π for the set of positional min strategies. Given a positional max strategy
σ ∈ Σ, let Gσ = 〈Smax , Smin , Sran , l′, r′〉 be the min MDP such that

• for all states s ∈ Smax , if σ(s) = L then l′(s) = l(s) and r′(s) = l(s), and
otherwise l′(s) = r(s) and r′(s) = r(s);
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• for all states s ∈ Smin ∪ Sran , we have l′(s) = l(s) and r′(s) = r(s).

For a positional min strategy π ∈ Π, the max MDP Gπ is defined analogously.
Given both σ ∈ Σ and π ∈ Π, let Gσ,π = 〈Smax , Smin , Sran , l′, r′〉 be the Markov
chain such that

• for all states s ∈ Smax , if σ(s) = L then l′(s) = l(s) and r′(s) = l(s), and
otherwise l′(s) = r(s) and r′(s) = r(s);

• for all states s ∈ Smin , if π(s) = L then l′(s) = l(s) and r′(s) = l(s), and
otherwise l′(s) = r(s) and r′(s) = r(s);

• for all states s ∈ Sran , we have l′(s) = l(s) and r′(s) = r(s).

The Markov chain Gσ,π characterizes the result of the game if the two players
follow the strategies σ and π, respectively. The SSG G is stopping if for all
strategies σ ∈ Σ and π ∈ Π, and all states s ∈ S, the Markov chain Gσ,π has
a winning play that starts in s. We will see that the stopping criterion ensures
that the probability of the game being played forever without one of the players
winning is 0.

Values

Consider a state s ∈ S+, a positional max strategy σ ∈ Σ, and a positional min
strategy π ∈ Π. We write Ωσ,π

s for the set of winning plays of the Markov chain
Gσ,π which start in s, and we write W σ,π

s ⊆ Ωσ,π
s for the set of max winning

plays that start in s. If G is stopping, then 〈Ωσ,π
s , Pr〉 is a discrete probability

space (why?). For every state s ∈ S+ of a stopping SSG, we define the following
probabilities:

• Let xσ,π
s = Pr[W σ,π

s ] be the probability that a play which starts in s is
max winning if the two players follow the strategies σ and π.

• Let xσ
s = minπ∈Π xσ,π

s be the least probability of max winning from s that
the min player can ensure against the max strategy σ. The positional min
strategies π ∈ Π at which the minimum is realized are called optimal min
strategies from s against the given max strategy σ.

• Let xs = maxσ∈Σ xσ
s be the greatest probability of max winning from s

that the max player can ensure against any min strategy. The positional
max strategies σ ∈ Σ at which the maximum is realized are called optimal

max strategies from s against any min strategy.

The probability
xs = max

σ∈Σ
min
π∈Π

Pr[W σ,π
s ]

is called the max value of the state s in the SSG G. The SSG decision problem
asks, given a stopping SSG G and a state s of G, whether xs > 1/2.
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Determinacy

Stopping SSGs are zero-sum games, which means that if the max player wins
the game, then the min player loses, and vice versa. This is because each
winning play is either max winning or min winning, but not both. An important
property of two-player zero-sum games is determinacy, which means that if both
players play optimally, then their respective probabilities of winning add up
to 1. Stopping SSGs are indeed determined for positional strategies. Formally,
for every state s ∈ S+ of a stopping SSG, define the min value

ys = min
π∈Π

max
σ∈Σ

Pr[Ωσ,π
s \W σ,π

s ]

to be the greatest probability of min winning from s that the min player can
ensure against any max strategy. Then it can be shown that ys = 1− xs for all
states s ∈ S+.

Value Improvement

The max values of a stopping SSG satisfy the following transition equations, one
for each state:

• for every state s ∈ Smax , we have xs = max{xl(s), xr(s)};

• for every state s ∈ Smin , we have xs = min{xl(s), xr(s)};

• for every state s ∈ Sran , we have xs = 0.5 · xl(s) + 0.5 · xr(s);

• xtmax
= 1 and xtmin

= 0.

The transition equations can be used to compute all max values:

algorithm ValueImprovement
Input: stopping SSG G = 〈Smax , Smin , Sran , l, r〉.
Output: max values xs for all states s ∈ S+.

xtmax
:= 1; xtmin

:= 0;
xs := 1 for all s ∈ Smax ;
xs := 0 for all s ∈ Smin ;
xs := 0.5 for all s ∈ Sran ;
while some xs changes do

xs := max{xl(s), xr(s)} for all s ∈ Smax ;
xs := min{xl(s), xr(s)} for all s ∈ Smin ;
xs := 0.5 · xl(s) + 0.5 · xr(s) for all s ∈ Sran ;
end while.

The algorithm ValueImprovement is guaranteed to converge to the max values,
but it may require an exponential number of iterations of the while loop, even in
the special case that G is a Markov chain (can you find an example?). However,
if G is a Markov chain or an MDP, then the transition equations can be solved
much more efficiently. For Markov chains, we can directly solve the resulting
system of linear equations:
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xs = xl(s) for all s ∈ Smax ∪ Smin ;
xs = 0.5 · xl(s) + 0.5 · xr(s) for all s ∈ Sran ;
xtmax

= 1 and xtmin
= 0.

For min MDPs, we can solve a linear optimization problem:

xs = xl(s) for all s ∈ Smax ;
xs ≤ xl(s) and xs ≤ xr(s) for all s ∈ Smin ;
xs = 0.5 · xl(s) + 0.5 · xr(s) for all s ∈ Sran ;
xtmax

= 1 and xtmin
= 0;

maximize
∑

s∈Smin
xs.

It follows that, given a positional max strategy σ ∈ Σ, we can compute on the
min MDP Gσ an optimal min strategy against σ by linear programming, in
polynomial time (how?). Moreover, we can check if σ is optimal against any

min strategy in polynomial time (how?). As a corollary, we conclude that the
SSG decision problem is in NP ∩ coNP (why?). No polynomial-time agorithm
is known for solving SSG games.

Random Permutations

A random permutation for an SSG is a permutation of the random states. We
associate with every random permutation p = 〈s1, . . . , sn〉 a positional max
strategy σp ∈ Σ, which intuitively behaves as follows:

• For all 0 ≤ i ≤ n, if s is a state from which the max player can ensure
that a state in {si+1, . . . , sn, tmax} is visited without visiting a state in
{s1, . . . , si}, then σp(s) follows such a strategy.

• If s is a state from which the max player cannot ensure that a state in
{s1, . . . , sn, tmax} is visited, then σp(s) is chosen arbitrarily.

Given a random permutation p, we can compute the strategy σ(p) in linear time
(how?). Gimbert and Horn (2008) have proved that for every stopping SSG,
there exists a random permutation p such that σ(p) is optimal against any min
strategy. Your task is to define and evaluate heuristics for constructing “good”
random permutations.
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