
Contents

13 Linear Temporal Logic 1

13.1 Linear Temporal Logic . 1
13.1.1 Syntax and Semantics . 2
13.1.2 Ltl as a specification logic 4

13.2 Decision procedure . 7
13.2.1 Tableau Decision Procedure 7
13.2.2 Ltl Model Checking . 10
13.2.3 Complexity . 11

13.3 Expressiveness . 13
13.3.1 Linear-time versus branching-time 13
13.3.2 Ltl versus ω-automata 16

0

Computer-Aided Verification

c© Rajeev Alur and Thomas A. Henzinger January 28, 2005

Chapter 13

Linear Temporal Logic

13.1 Linear Temporal Logic

In the last chapter, we studied how to use ω-automata to specify liveness re-
quirements regarding infinite behaviors of fair modules. Such requirements can
be alternatively, and more succinctly, specified using the temporal logic.

1

Linear Temporal Logic 2

13.1.1 Syntax and Semantics

While the formulas of branching-time logics such as Ctl are interpreted over
trees, the formulas of linear temporal logic (Ltl) are interpreted over ω-words
over observations. As in case of Ctl, the logic Ltl employs temporal modali-
ties such as next , always , eventually , and until. While in Ctl every temporal
connective has two types; existential and universal (e.g. possibly-next ∃© vs.
inevitably-next ∀©), such a distinction is not necessary in Ltl whose formu-
las are interpreted over a fixed ω-word. On the other hand, while Ltl admits
nesting of temporal connectives freely, operators such 23 are not expressible in
Ctl.

Linear Temporal Logic: Syntax

The formulas of Linear Temporal Logic (Ltl) are defined inductively by the
grammar

ϕ ::= p | ϕ ∨ ϕ | ¬ϕ | ©ϕ | ϕUϕ

for observation predicates p.

The Ltl formulas are interpreted over the positions of an infinite sequence
of observations. Consider an ω-word a over the alphabet A whose symbols
give interpretation to the predicates appearing in an Ltl formula. The truth
of an atomic predicate at the position i of a is evaluated according to the
corresponding observation ai of a. The next-formula ©ϕ holds at the position
i of a iff the formula ϕ holds at the next-position i+ 1 of a. The until-formula

ϕ1Uϕ2 holds at the position i of a iff theres exists a later position j ≥ i such
that the formula ϕ2 holds at the position j and the formula ϕ1 holds at all
positions k such that i ≤ k < j.

For an Ltl formula ϕ, the set Aϕ contains the set of all possible valuations to
the atomic predicates appearing in ϕ.

Linear Temporal Logic 3

Linear temporal logic: Semantics

An Ltl formula ϕ is interpreted at the positions of ω-words over the set Aϕ
of observations. For all ω-words a and all i ≥ 0,

i |=a p iff ai |= p;
i |=a ϕ1 ∨ ϕ2 iff i |=a ϕ1 or i |=a ϕ2;
i |=a ¬ϕ iff i 6|=a ϕ;
i |=a ©ϕ iff i+ 1 |=a ϕ;
i |=a ϕ1Uϕ2 iff there is a natural number j ≥ i such that

j |=a ϕ2 and for all i ≤ k < j, k |=a ϕ1.

The ω-word a satisfies the Ltl formula ϕ, written a |= ϕ, if 0 |=a ϕ. The
ω-language Lϕ defined by ϕ is the set {a ∈ Aωϕ | a |= ϕ} of ω-words that
satisfy ϕ. The Ltl formula ϕ is satisfiable if the ω-language Lϕ is nonempty,
and valid if the ω-language Lϕ equals Aωϕ.

The following temporal operators are defined in Ltl:

3ϕ for true U ϕ;
2ϕ for ¬3¬ϕ;
ϕ1Wϕ2 for ϕ1Uϕ2 ∨ 2ϕ1.

The temporal operators ©, 2, 3, U , and W are called next, always, eventually,
until, and wait-for, respectively. The eventually-formula 3ϕ holds at the posi-
tion i of an ω-word a if the formula ϕ holds at some position j ≥ i of a; the
always-formula 2ϕ holds at the position i of an ω-word a if the formula ϕ holds
at all positions j ≥ i of a.

Remark 13.1 [Propositional Ltl] The Ltl formula ϕ is propositional if every
atomic predicate in ϕ is a propositional formula. For a propositional Ltl formula
ϕ, an observation in Aϕ is a valuation for the set Xϕ of boolean variables
appearing in ϕ, and the set Aϕ equals the power-set 2Xϕ .

Example 13.1 [Ltl languages] The Ltl formula 2p defines the safety language
containing ω-words all of whose observations satisfy p. The Ltl formula 3p

defines the guarantee language containing ω-words that contain an observation
satisfying p. The Ltl formula 23p defines the response language containing ω-
words that contain infinitely many observations satisfying p. The Ltl formula
32p defines the persistence language containing ω-words with a suffix with
only observations satisfying p. Thus, the Ltl operators 2, 3, 23, and 32

correspond to the operators safe, guar, recur, and persist, respectively.

Linear Temporal Logic 4

13.1.2 Ltl as a specification logic

We can view Ltl as a fair state logic, by interpreting Ltl formulas over the
states of a given fair structure K.

Ltl semantics over fair structures

Let ϕ be an Ltl formula, and let K be a fair structure with observations
Aϕ. For a state s of K, s |=K ϕ if all source-s fair ω-traces of K satisfy ϕ.
The fair structure K satisfies the Ltl formula ϕ if s |=K ϕ for all initial
states s of K.

Thus, a fair structure K satisfies an Ltl formula ϕ if every fair trace of K
satisfies ϕ: LK ⊆ Lϕ. The model checking problem and verification problem
for Ltl are defined as in other logics.

Remark 13.2 [Interpretation of atoms] Let ϕ be an Ltl formula whose atomic
predicates are boolean expressions over the set Xϕ of variables. Then, the set
Aϕ is the set ΣXϕ

of valuations for Xϕ. We can interpret the formula ϕ over a
fair structure whose observations are valuations for a superset of the variables
Xϕ.

Example 13.2 [Ltl specifications for mutual exclusion] Recall the mutual ex-
clusion problem from Chapter 2. The mutual exclusion requirement is specified
by the Ltl formula

ϕme : 2¬(pc1 = inC ∧ pc2 = inC).

The first-request-first-in requirement that if process P1 requests an entry to the
critical section while process P2 is outside, then P2 cannot overtake P1 to enter
the critical section, is expressed by the formula

ϕfifo : 2 [(pc1 = reqC ∧ pc2 = outC) → (pc2 6= inC)W (pc1 = inC)].

Finally, the starvation freedom requirement for process P1 is specified by the
formula

ϕsf : 2 (pc1 = reqC → 3pc1 = inC).

Remark 13.3 [Ltl specifications] The observation predicate p is an invariant
of the module P iff the module P satisfies the Ltl formula 2p; the observation
predicate p is a recurrent of the fair module P iff the fair module P satisfies
the Ltl formula 23p; and the observation predicate p is a response to the
observation predicate q for the fair module P iff the fair module P satisfies the
Ltl formula 2(p → 3q).

Linear Temporal Logic 5

Example 13.3 [Producer-consumer requirements] Recall the message-passing
protocols from Section 2.3.3, and their fair versions from Section 9.5.3. Let
us consider the requirement that if the producer produces a message, say with
valuem, then eventually the consumer consumes a message with valuem. Recall
that the producer signals the production of the message by issuing the event
doneP , and the produced message appears in the variable msgP . The consumer
signals the consumption of the message by issuing the event doneC , and the
consumed message appears in the variable msgC . Let doneP ? denote the Ltl

formula (doneP ↔ ©¬doneP), and for a message value m, let doneP ?m denote
the Ltl formula (doneP ↔ ©¬doneP) ∧ ©(msgP = m). The abbreviations
doneC? and doneC?m are defined analogously. Then, the desired requirement
is specified by the formula

ϕresp :
∧
m ∈

�
.2 [doneP ?m → 3 doneC?m].

Verify that the fair module FairSyncMsg satisfies the requirement ϕresp .

Let us now consider the copy-requirement that, in every round i, if a denotes
the (finite) sequence of messages produced by the producer so far, then (1) the
sequence of messages consumed by the consumer upto round i is a prefix of a,
and (2) there exists a later round j such that the sequence of messages consumed
by the consumer upto round j equals a. The former is a safety requirement,
while the latter is a liveness requirement. The Ltl formula ϕresp is only an
approximation to the liveness part of the copy-requirement. It turns out that
the copy-requirement is not expressible in Ltl. We can approximate it by
verifying ϕresp , and many additional weaker requirements such as

∧
m ∈

�
. [23 doneP ?m ↔ 23 doneC?m],

which requires that the producer produces infinitely many messages with value
m iff the consumer consumes infinitely many messages with value m, and

∧
m ∈

�
. [(¬doneC?m) W doneP ?m]

which requires that the consumer does not consume a message with value m
unless at least one such message is produced by the producer.

A requirement stronger than the copy-requirement stipulates strict alternation
between production and consumption starting with the production, and is ex-
pressed by the Ltl formula ϕalternate :

(doneC? W doneP ?)
∧ ∧m ∈

�
.2[doneP ?m → ©((¬doneP ?)U doneC?m)]

∧ ∧m ∈
�
.2[doneC? → ©((¬doneC?)W doneP ?)]

The fair module FairSyncMsg does not satisfy the requirement ϕalternate even
though FairSyncMsg satisfies the copy-requirement. This is because the pro-
ducer may produce two messages before the consumer has consumed any mes-
sage.

Linear Temporal Logic 6

Exercise 13.1 {P3} [Monitor] Design a monitor module CopyMonitor whose
variables keep track of the produced and consumed messages such that the safety
aspect of the copy requirement reduces to an invariant verification problem for
the compound module SyncMsg ‖CopyMonitor and the liveness aspect of the
copy requirement reduces to a response verification problem for the compound
fair module FairSyncMsg ‖CopyMonitor .

Like µ-calculus, fairness requirements can be specified within Ltl. Let K be an
observation structure, and consider a Büchi constraint specified by the obser-
vation predicate p. Then, an ω-trajectory s is fair iff the ω-trace 〈〈s〉〉 satisfies
the Ltl formula 23p. Suppose the fairness assumption requires fairness with
respect to the action α specified as [[p ∧ q′]] for two observation predicates p
and q. Then, α-fair ω-trajectories are precisely those satisfying the Ltl formula
23(p ∧ ©q).

Now consider the Streett constraint (p, q) specified by two observation predicates
p and q. Fairness of an ω-trajectory with respect to such a Streett constraint is
specified by the Ltl formula 23p → 23q. Fairness with respect to multiple
Streett constraints corresponds to conjunction of Ltl formulas corresponding
to individual Streett constraints.

Proposition 13.1 [Fairness specification in Ltl] Given a fair module P, there

exists an Ltl formula ϕP such that an ω-trajectory s of the module P is a fair

trajectory iff s |= ϕP .

To verify all the fair trajectories of a fair module P satisfy a requirement ψ, we
can verify whether all trajectories of the underlying module satisfy the implica-
tion ϕP → ψ.

Example 13.4 [Specifying fairness assumption in Ltl] Recall the fairness con-
straints of the module FairSyncMutex from Figure 9.4. Requirement of weak
fairness with respect to the update choices α1 and α2 is specified by the Ltl

formula ϕFairSyncMsg :

23 pc1 6= inC ∧ 23 pc2 6= inC

Consider the specification ϕsf of starvation freedom from Example 13.2. The
module SyncMutex does not satisfy the specification ϕsf , but satisfies the for-
mula ϕFairSyncMutex → ϕsf .

Exercise 13.2 {P2} [Mutual exclusion] Recall the fairness constraints of the
module FairPete from Figure 9.5. Write down the Ltl formula ϕFairPete that
captures the weak-fairness constraints of FairPete, and verify that the module
Pete satisfies the Ltl formula ϕFairPete → ϕsf .

Linear Temporal Logic 7

s4

©2q, q

ϕ,©ϕ

3p, p

ϕ,©ϕ

3p,©3p

ϕ,2q, q,©2q

3p, p 3p,©3p

ϕ,2q, q,©2q

s0 s1 s2

s3

Figure 13.1: Tableau construction for (3p)U (2q)

13.2 Decision procedure

In this section, we give an algorithm for constructing, given an Ltl formula ϕ, a
Büchi automaton accepting the set Lϕ of ω-words satisfying ϕ. This construc-
tion leads to a model checking algorithm for Ltl.

13.2.1 Tableau Decision Procedure

Let ϕ be an Ltl formula. We wish to construct a Büchi automaton Mϕ over
the alphabet Aϕ such that an ω-word a is accepted by Mϕ iff a |= ϕ. States
of the desired automaton are sets of subformulas of ϕ. Such an automaton is
called a tableau.

Sample construction

To illustrate the principles of the tableau construction, let us consider the Ltl

formula ϕ = (3p)U (2q). The states of the tableau are collections of Ltl

formulas derived from ϕ. Each state s is to a set of formulas, and we would like
to ensure that every formula contained in the state s is satisfied by every source-
s ω-trajectory in the tableau. The initial states of the tableau are required to
contain the given formula ϕ. From the semantics of the until-connective, an
initial state satisfies ϕ if either (1) it satisfies 2q, or (2) it satisfies both ©ϕ and
3p. In the former case, to satisfy 2q, the initial state should also satisfy q as well
as ©2q, and this gives the initial state s0 = {ϕ,2q,©2q, q} (see Figure 13.1).
In the latter case, 3p can be satisfied by either p, or by ©3p. The corresponding
initial states are s1 = {ϕ,©ϕ,3p, p} and s2 = {ϕ,©ϕ,3p,©3p}.

To obtain successors of a state, we examine the next-formulas in the state. For
every ©ψ contained in the current state, the successor should contain ψ. Since
s0 contains ©2q, its successor is required to contain 2q, and hence, we add
a transition from s0 to itself. The successors of s1 are required to contain ϕ.

Linear Temporal Logic 8

Since ϕ can be satisfied in three ways, all the initial states are successors of s1.
The successors of s2 are required to contain both ϕ and 3p. The formula ϕ

can be satisfied in three ways, while 3p can be satisfied either by p or by ©3p.
Continuing in this manner, we get the tableau of Figure 13.1 with five states.

We would like to ensure that if t is an infinite trajectory in the tableau, then for
every position i ≥ 0 and every formula ψ ∈ ti, i |=t ψ. This is not quite true yet.
For instance, in the ω-trajectory sω2 that corresponds to looping forever at the
state s2, every state contains 3p, but no state satisfies p. Intuitively, along this
ω-trajectory the choice to satisfy 3p is postponed forever. This can be avoided
by adding Büchi constraints. In this example, we need two Büchi constraints
since there are two eventualities. The first constraint requires that to satisfy
ϕ, one must satisfy 2q eventually. This is expressed by the Büchi constraint
σϕ = {s0, s3, s4} containing states that contain 2q. The second constraint
requires that to satisfy 3p, one must satisfy p eventually. This is expressed by
the Büchi constraint σ3p = {s0, s1, s4} containing states that either contain p

or do not contain 3p. Verify that, for the tableau of Figure 13.1 together with
the multi-Büchi assumption {σϕ, σ3p}, the set of fair trajectories corresponds
to the set of ω-words that satisfy ϕ.

In summary, in a tableau construction, states are subsets of formulas. Each
formula stipulates requirements concerning other formulas that must be satisfied
in the current state. The transition relation ensures propagation of the next-
formulas from one state to its successor. Fairness constraints ensure eventual
fulfillment of eventuality- or until-formulas. We proceed to formalize the tableau
construction. In our example, we treated formulas that do not appear in a state
as “don’t care.” For instance, in the initial state s0, there is no mention of the
formulas 3p and p. In the formal construction, each state assigns a truth to
every subformula.

Closure

The closure Sub(ϕ) of the Ltl formula ϕ is defined inductively as

Sub(p) = {p};
Sub(ϕ1 ∨ ϕ2) = {ϕ1 ∨ ϕ2} ∪ Sub(ϕ1) ∪ Sub(ϕ2);
Sub(¬ϕ) = {¬ϕ} ∪ Sub(ϕ);
Sub(©ϕ) = {©ϕ} ∪ Sub(ϕ);
Sub(ϕ1Uϕ2) = {ϕ1Uϕ2,©(ϕ1Uϕ2)} ∪ Sub(ϕ1) ∪ Sub(ϕ2).

Notice that the closure of a formula ϕ contains more than the syntactic subfor-
mulas of ϕ, namely, if an until-formula ϕ1Uϕ2 is in the closure, then so is the
next-formula ©(ϕ1Uϕ2).

Proposition 13.2 [Size of closure] For every Ltl formula ϕ, ϕ ∈ Sub(ϕ) and

|Sub(ϕ)| ≤ 2|ϕ|.

Linear Temporal Logic 9

Tableau

A subset s ⊆ Sub(ϕ) of the closure of ϕ is consistent if the following conditions
are satisfied:

if (χ1 ∨ χ2) ∈ Sub(ϕ) then (χ1 ∨ χ2) ∈ s iff χ1 ∈ s or χ2 ∈ s,
if ¬χ ∈ Sub(ϕ) then ¬χ ∈ s iff χ 6∈ s,
if (χ1Uχ2) ∈ Sub(ϕ) then (χ1Uχ2) ∈ s iff either χ2 ∈ s or both

χ1 ∈ s and ©(χ1Uχ2) ∈ s.

Ltl Tableau

Given an Ltl formula ϕ the ϕ-tableau is the multi-Büchi automaton Mϕ:

• The state-space of Mϕ is the set Σϕ of consistent subsets of Sub(ϕ).

• The transition relation of Mϕ is the relation →ϕ: for s, t ∈ Σϕ, s→ϕ t

if for all formulas ©χ ∈ Sub(ϕ), ©χ ∈ s iff χ ∈ t.

• A state s ∈ Σϕ is initial iff ϕ ∈ s.

• The set of observations is the set Aϕ of valuations of the atomic pred-
icates in ϕ.

• The observation of a state s is the set of atomic predicates in s (that
is, 〈〈s〉〉 |= p iff p ∈ s).

• For each until-formula (χ1Uχ2) ∈ Sub(ϕ), the fairness assumption of
Mϕ contains the Büchi constraint

{s ∈ Σϕ | χ2 ∈ s or (χ1Uχ2) 6∈ s}.

Proposition 13.3 [Correctness of tableau construction] For every Ltl formula

ϕ, Lϕ equals LMϕ
.

Proof. Let ϕ be an Ltl formula, and let a be an ω-word over the set Aϕ
of observations. Suppose a |= ϕ. For i ≥ 0, let si ⊆ Sub(ϕ) be the set
{χ ∈ Sub(ϕ) | i |=a χ} of formulas true at position i in a. From the definitions,
it follows that (1) for all i, the set si is consistent, (2) for all i, si →ϕ si+1, (3)
the set s0 is an initial state of Mϕ, (4) for all i, the observation of the state si
in Mϕ is ai, and (5) for each (χ1Uχ2) ∈ Sub(ϕ), if i |=a χ1Uχ2 for infinitely
many positions i, then j |=a χ2 for infinitely many positions j. It follows that
s is a fair initialized ω-trajectory of the tableau Mϕ, and a belongs to LMϕ

.

Now consider an initialized fair ω-trajectory s of Mϕ. Let a be the correspond-
ing ω-trace. We want to establish that for all χ ∈ Sub(ϕ), for all i ≥ 0, χ ∈ si
iff i |=a χ. The proof is by induction on the structure of χ, and is left as an
exercise. It follows that a |= ϕ.

Linear Temporal Logic 10

The number of states of the tableau of an Ltl formula is exponential in the
length of the formula: for an Ltl formula ϕ of length k, the automaton Mϕ has
at most 4k states and k Büchi constraints. Checking satisfiability of the Ltl

formula ϕ corresponds to checking whether the fair language of the automaton
Mϕ is nonempty, and thus, can be solved in time 2O(|ϕ|). Checking validity of
the Ltl formula corresponds to checking satisfiability of the negated formula
¬ϕ, and thus, can also be solved in time 2O(|ϕ|).

Exercise 13.3 {T3} [On-the-fly tableau] In our definition of the tableau Mϕ,
every state assigns a truth value to every formula in Sub(ϕ). As indicated in
our example (see Figure 13.1), not every formula needs to be evaluated in every
state. Develop an algorithm to construct a tableau for the input formula that
considers the formulas in the closure only as needed.

13.2.2 Ltl Model Checking

Let K be a fair structure, and let ϕ be an Ltl formula. The model checking
problem (K, ϕ) corresponds to verifying that the ω-language LK is contained
in the ω-language Lϕ, which, by the tableau-construction, corresponds to the
ω-language inclusion problem (K,Mϕ). Observe that the tableau Mϕ is a non-
deterministic ω-automaton, and hence, solving the ω-language inclusion problem
(K,Mϕ) is computationally hard, namely, exponential in the size of the struc-
ture Mϕ.xs However, we can avoid the complementation construction for ω-
automata if, instead of constructing the tableau for ϕ, we construct the tableau
M¬ϕ for the negated formula ¬ϕ. The ω-automaton M¬ϕ accepts all ω-words
that do not satisfy the specification ϕ. Now, the fair structure K satisfies ϕ iff
the intersection of the ω-languages of K and M¬ϕ is empty. This approach of
negating the formula before applying the tableau-construction avoids the need
for complementing the tableau.

Proposition 13.4 [Ltl model checking] The answer to the Ltl model checking

problem (K, ϕ) is Yes iff the answer to the fair-emptiness problem K × M¬ϕ

is Yes.

Since we already know how to obtain product of two ω-automata, and we know
how to solve the fair emptiness problem for finite structures, we have an algo-
rithm for Ltl model checking.

Theorem 13.1 [Ltl model checking] If ϕ is an Ltl formula of length k and K
is a fair structure with n states, m transitions, and ` fairness constraints, then

the Ltl model checking problem (K, ϕ) can be solved in time O((m+ n) · `2 · k ·
2O(k)).

Linear Temporal Logic 11

Remark 13.4 [Ltl model checking of weak-fair structures] If K is a weak-fair
structure, then so is the product K×M¬ϕ. If K has ` weak-fairness constraints,
and Sub(ϕ) has k until-formulas, then the product has `+ k weak-fairness con-
straints. It follows that the the Ltl model checking problem (K, ϕ), for a
weak-fair structure, can be solved in time O((m+ n) · (`+ k) · 2O(k)).

A variety of heuristics can be used to improve the computational requirements of
Ltl model checking. In particular, an on-the-fly representation of the structure
is used, and the product with the tableau is generated only during the search.

Remark 13.5 [Ltlvs. Ctl] Recall that the Ctl model-checking problem (K, φ),
for a Ctl formula φ of length k, can be solved in time O((m+n) · `2 · k). Thus,
while Ctl model checking is linear in the size of the formula, Ltl model check-
ing is exponential in the size of the formula. However, both model checking
problems have identical model complexity.

If P is a propositional fair module with n boolean variables and ϕ is an Ltl

formula of length k, then the Ltl verification problem (P , ϕ) can be solved in
time exponential in n+ k.

13.2.3 Complexity

The Ltl satisfiability problem is to determine whether a given Ltl formula ϕ is
satisfiable. Checking satisfiability of ϕ corresponds to checking emptiness of the
tableau Mϕ. Search for a reachable fair cycle in the tableau can be performed
using space logarithmic in the number of states of the tableau, or equivalently,
linear in the size of the formula ϕ. It follows that the Ltl satisfiability problem is
in PSPACE. It turns out that checking satisfiability of Ltl formulas is PSPACE-
hard.

Theorem 13.2 [Ltl complexity] The satisfiability and the validity problems

for Ltl are PSPACE-complete.

Proof. An Ltl formula ϕ is satisfiable iff the formula ¬ϕ is valid. It remains
to be shown that the satisfiability problem is PSPACE-hard. Proof to be added.

Hardness of the satisfiability problem implies a lower bound for the model check-
ing problem also.

Theorem 13.3 [Ltl model checking comlexity] The Ltl model checking prob-

lem (K, ϕ), for a finite fair structure K, is PSPACE-complete.

Proof. The Ltl model checking problem (K, ϕ), for a finite fair structure K,
reduces to searching for a reachable fair cycle of the product K × M¬ϕ. The

Linear Temporal Logic 12

search can be performed in space logarithmic in the number of states of the
product, and PSPACE upper bound follows.

For lower bound, we reduce the Ltl validity problem to Ltl model checking.

Remark 13.6 [Ltl model complexity] The model complexity of the Ltl model
checking problem is NLOGSPACE. The complexity of the Ltl verification prob-
lem (P , ϕ), for a propositional fair module P , is PSPACE.

Exercise 13.4 {T3} [Ltl without next] Show that the decision and model
checking problems for Ltl without the next operator are still PSPACE-hard.

Exercise 13.5 {T3} [Ltl3] Let Ltl3 result from Ltl by replacing the until
operator U with the eventually operator 3. Prove that the decision problem for
Ltl3 is still PSPACE-hard.

Exercise 13.6 {T3} [Ltl3 without next] Show that if an Ltl3 formula ϕ with-
out next operators is satisfiable, then it is satisfiable by an ω-word of the form
a1a

ω
2 such that |a1a2| ≤ |ϕ|. Then prove that the decision problem for Ltl3

without the next operator is NP-complete.

Exercise 13.7 {T3} [Ltl with past operators] The syntax of Past Ltl is de-
fined as

ϕ ::= p | ϕ1 ∨ ϕ2 | ¬ϕ | ©ϕ | ϕ1Uϕ2 | −©ϕ | ϕ1Sϕ2.

The semantics of the previous and since operators are defined as

i |=a −©ϕ iff i > 0 and i− 1 |=a ϕ;
i |= ϕ1Sϕ2 iff for some j ≤ i, j |=a ϕ2 and for all j < k ≤ i, k |=a ϕ1.

Give a tableau-based decision procedure for Past Ltl and then prove that the
decision problem for Past Ltl is complete for PSPACE.

Exercise 13.8 {T3} [Counting Ltl] The syntax of Counting Ltl is defined as

ϕ ::= p | ϕ1 ∨ ϕ2 | ¬ϕ | ©nϕ | ϕ1Uϕ2

for natural numbers n (represented in logarithmic notation, e.g., binary or dec-
imal). The semantics of the counting operator is defined as

i |=a ©nϕ iff i+ n |=a ϕ.

Give a tableau-based decision procedure for Counting Ltl and then prove that
the decision problem for Counting Ltl is complete for EXPSPACE.

Linear Temporal Logic 13

13.3 Expressiveness

13.3.1 Linear-time versus branching-time

How do the expressive powers of the branching-time logic Ctl and the lin-
ear time logic Ltl compare? We have already seen that Ctl cannot express
operators such as 23, and thus, cannot be more expressive than Ltl. For the
converse, while the state equivalence induced by Ctl coincides with bisimilarity,
the state equivalence induced by Ltl coincides with trace-equivalence:

Proposition 13.5 [State equivalence of Ltl] Trace-equivalence is a fully ab-

stract semantics for Ltl over observation structures.

Since Ctl can distinguish between two states that are trace-equivalent, but not
bisimilar, Ltl cannot be more expressive that Ctl.

Proposition 13.6 [Expressive power of Ltl vs. Ctl] The expressive powers

of the temporal logics Ctl and Ltl are incomparable. In particular, no Ltl

formula is equivalent to the Ctl formula ∀© ∃© p, and no Ctl formula is

equivalent to the Ltl formula 23p.

The deficiency of Ltl compared to Ctl is the lack of existential quantification
over trajectories, while the deficiency of Ctl compared to Ltl is the inability to
nest temporal connectives to express requirements regarding a fixed trajectory.
This motivates the definition of a temporal logic that is more expressive than
both Ctl and Ltl.

Before we define the combination of Ctl and Ltl, let us understand the dis-
tinction between state formulas and trajectory formulas. While the formulas of
a (fair) state logic—state formulas—are interpreted over the states of a (fair)
observation structure, the formulas of a trajectory logic—trajectory formulas—
are interpreted over the ω-trajectories of a (fair) observation structure. We can
view Ctl as a two-sorted logic with state formulas φ and trajectory formulas ϕ:

φ ::= p | ¬φ | φ1 ∨ φ2 | ∃ϕ

ϕ ::= ©φ | φ1Uφ2 | 2φ

where p is an atomic formula. On the other hand, we can view Ltl as a two-
sorted logic with state formulas φ and trajectory formulas ϕ:

φ ::= ∀ϕ

ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | ©ϕ | φ1Uφ2

where p is an atomic formula. The logic Ctl∗ allows the state-formulas as in
Ctl and trajectory formulas as in Ltl.

Linear Temporal Logic 14

Temporal logic Ctl∗: Syntax

The formulas of Ctl∗ are defined inductively by the two-sorted grammar
with state formulas φ and trajectory formulas ϕ:

φ ::= p | ¬φ | φ1 ∨ φ2 | ∃ϕ

ϕ ::= φ | ¬ϕ | ϕ1 ∨ ϕ2 | ©ϕ | ϕ1Uϕ2

where p is an atomic formula.

Given a fair structure K whose observations are valuations to the atomic predi-
cates, state-formulas of Ctl∗ are interpreted at states of K, while the trajectory-
formulas of Ctl∗ are interpreted at positions of the fair trajectories of K.

Temporal logic Ctl∗: Semantics

Let K = (K,F) be a fair structure. For each state s of K,

s |=K p iff 〈〈s〉〉 |= p;
s |=K ¬φ iff s 6|=K φ;
s |=K φ1 ∨ φ2 iff s |=K φ1 or s |=K φ2;
s |=K ∃ϕ iff there is a source-s F -fair ω-trajectory s

of K such that (s, 0) |=K ϕ.

For each ω-trajectory s of K and each position i ≥ 0,

(s, i) |=K φ iff si |=K φ;
(s, i) |=K ¬ϕ iff (s, i) 6|=K ϕ;
(s, i) |=K ϕ1 ∨ ϕ2 iff (s, i) |=K ϕ1 or (s, i) |=K ϕ2;
(s, i) |=K ©ϕ iff (s, i+ 1) |=K ϕ;
(s, i) |=K ϕ1Uϕ2 iff there exist j ≥ i such that (s, j) |=K ϕ2

and for all i ≤ k < j, (s, k) |=K ϕ1.

The fair structure K satisfies the Ctl∗ formula φ if s |=K φ for every initial
state s of K.

The following operators are defined in Ctl∗:

∀ϕ for ¬∃¬φ;
3ϕ for trueUϕ;
2ϕ for ¬3¬ϕ;
ϕ1Wϕ2 for ϕ1Uϕ2 ∨ 2ϕ1.

Remark 13.7 [Ctl∗ vs. Ltl and Ctl] Since every Ctl formula is a Ctl∗

formula, and for every Ltl formula ϕ, the equivalent Ctl∗ formula is ∀ϕ, it
follows that Ctl∗ is more expressive power than both Ltl and Ctl.

Linear Temporal Logic 15

While the expressive power of Ctl∗ is more than Ctl, the equivalence induced
by Ctl∗ coincides with bisimilarity, and thus, its distinguishing power coincides
with Ctl.

Proposition 13.7 [Equivalence induced by Ctl∗] Bisimilarity is a fully ab-

stract semantics of Ctl∗ over observation structures.

Exercise 13.9 {T3} [Ctl+] The formulas of Ctl+ are defined inductively by
the two-sorted grammar

φ ::= p | ¬φ | φ1 ∨ φ2 | ∃ϕ

ϕ ::= ¬ϕ | ϕ1 ∨ ϕ2 | ©φ | φ1Uφ2

where p is an atomic formula. For example, for two propositions a and b, the
Ctl

+ formula ∃(3a ∧ 3b) is equivalent to the Ctl formula

∃3(a ∧ ∃3b) ∨ ∃3(b ∧ ∃3a).

Give a systematic construction that yields for each Ctl+ formula φ an equiva-
lent Ctl formula φ−. For your construction, what is the blowup in the size of
the formula? (If φ has length k, give an asymptotic bound for the length of φ−

as a function of k.)

Exercise 13.10 {T3} [Ctl3] Let Ctl3 be obtained from Ctl by replacing
the binary operator ∃U with the unary operator ∃3, and let Ctl+

3
be obtained

from Ctl+ by replacing the binary operator U with the unary operator 3.
Consider two propositions a and b. Prove that no Ctl3 formula is equivalent
to the Ctl+

3
formula ∃(2a ∧ 3b) over finite observation structures, and that no

Ctl
+
3

formula is equivalent to the Ctl formula a∃Ub. We conclude that Ctl3

≺ Ctl+
3
≺ Ctl ≡ Ctl+ ≺ Ctl∗.

Ctl∗ model checking

Theorem 13.4 [Ctl
∗ model checking] If φ is a Ctl

∗ formula of length k and

K is a fair structure with n states, m transitions, and ` fairness constraints,

then the Ctl∗ model checking problem (K, φ) can be solved in time O((m+ n) ·
`2 · 2O(k)).

Remark 13.8 [Space complexity of Ctl∗] For finite fair structures, the Ctl∗

model checking problem is PSPACE-complete. The structure complexity of
Ctl∗ model checking is NLOGSPACE. Thus, the space complexity of Ctl∗

model checking coincides with the space complexity of Ltl model checking.
The Ctl

∗ verification problem (P , φ) is PSPACE-complete.

Linear Temporal Logic 16

13.3.2 Ltl versus ω-automata

The tableau construction establishes that, for every Ltl formula ϕ, the ω-
language Lϕ is ω-regular. The converse does not hold. In particular, the prop-
erty that requires p to be true at every even position is not specifiable in Ltl,
while it is speciable using automata as indicated in Figure 7.6.

Proposition 13.8 [Ltl cannot express even] For A = {a, b}, the ω-regular

language Leven that contains the ω-word c iff ci = a for all even numabers i, is

not expressible in Ltl.

Corollary 13.1 [Ltl vs. Lal] The live automaton logic Lal is more expressive

than Ltl.

While Lal is more expressive than Ltl, the distinguishing powers of the two
logics coincide, both logics induce trace-equivalence over observation structures.

Exercise 13.11 {T4} [Periodic Ltl] The syntax of Periodic Ltl is defined as

ϕ ::= p | ϕ1 ∨ ϕ2 | ¬ϕ | ©ϕ | ϕ1Unϕ2

for natural numbers n. The semantics of the periodic-until operator is defined
as

i |=a ϕ1Unϕ2 iff for some j ≥ 0, i+ jn |=a ϕ2 and for all 0 ≤ k < j,
i+ kn |=a ϕ1.

(1) Express the property that “proposition x is true at every even position of
an observation sequence” in Periodic Ltl. (2) Give a tableau-based decision
procedure for Periodic Ltl. (3) What is the complexity of the decision problem
for Periodic Ltl if numerals are represented in unary (binary, respectively)?

Exercise 13.12 {T4} [Linear-time µ-calculus] The formulas of the Linear µ-

calculus Ltµ are defined as

ϕ ::= p | ϕ1 ∨ ϕ2 | ¬ϕ | ©ϕ | µX.ϕ′ | X

where p is an observation predicate, X ∈ P is a formula variable, and each
free occurrence of X in ϕ′ occurs within an even number of negations. The
linear µ-calculus is interpreted over infinite observation sequences. Give a formal
definition of the semantics of Ltµ such that (1) the Ltl formula ϕ1Uϕ2 is
equivalent to the Ltµ formula (µX.ϕ2 ∨ (ϕ1 ∧ ©X)) and (2) the Ltµ formula
(νX. y ∧ © © X) is satisfied by the ω-word a iff the proposition y is true at
every even-numbered position of a. When defining the semantics of Ltµ, you
need to show that all required fixpoints exist (What is the underlying c.p.o.?
Why are all definable functions monotonic?) and that (1) and (2) are indeed
the case. Then prove that all definable functions are continuous.

Linear Temporal Logic 17

Monadic second-order logic S1S

The fragment S1S of second-order logic is a classical notation to define ω-
languages. The logic S1S allows first-order variables that range over nonnegative
integers, and its terms are built from the first-order variables using the succes-
sor function “+1” that corresponds to adding 1. The formulas are built using
logical connectives, first-order and second-order quantifiers, comparing terms
using the ordering <, and second-order unary variables.

Formally, the set of terms of S1S is generated by the grammar

e := 0 | i | e+ 1,

where i is a first-order variable. The set of formulas of S1S is generated by the
grammar

ϕ := p(e) | e < e | ¬ϕ | ϕ ∨ ϕ | ∃i. ϕ | ∃p. ϕ,

where p is a second-order variable.

Formulas of S1S are evaluated with respect to environments that map first-
order variables to nonnegative integers and second-order variables to sets of
nonnegative integers. Let E be an environment that maps first-order variables
to � and second-order variables to 2 � . Then, E maps terms of S1S to � :
E(0) = 0 and E(e+ 1) = E(e) + 1. The satisfaction relation |=E for the formulas
of S1S is defined inductively:

|=E p(e) iff E(e) ∈ E(p);
|=E e1 < e2 iff E(e1) < E(e2);
|=E ¬ϕ iff 6|=E ϕ;
|=E ϕ1 ∨ ϕ2 iff |=E ϕ1 or |=E ϕ2;
|=E ∃i. ϕ iff for some j ∈ � , |=E[i:=j] ϕ;
|=E ∃p. ϕ iff for some σ ⊆ � , |=E[p:=σ] ϕ.

The unary predicates in S1S formulas can be viewed as boolean variables. If
X consists of boolean variables, and a is an ω-word over the valuations for X ,
then, for every x ∈ X , the ω-word a specifies the set x[a] = {i ≥ 0 | ai |= x}
of positions. Consequently, a formula ϕ of S1S can be evaluated with respect
to ω-words over observations that evaluate the second-order variables in ϕ. For
instance, the S1S formula

∀i. (p(i) → ∃j. (i ≤ j ∧ q(j)))

specifies the ω-language corresponding to the Ltl formula

2(p → 3q).

Let ϕ be an S1S formula whose free second-order variables are in X , and let a be
an ω-word over the alphabet ΣX . Then, a |= ϕ iff |=E ϕ for every environment
E such that for all p ∈ X and all i ∈ � , i ∈ E(p) iff ai |= p. The ω-language Lϕ
consists of ω-words a over ΣX such that a |= ϕ.

Linear Temporal Logic 18

Exercise 13.13 {T2} [S1S] Define a mapping from Ltl formulas to S1S for-
mulas that preserves the ω-language.

An outstanding theorem due to Büchi establishes that the expressive power of
S1S and Büchi automata coincide:

Theorem 13.5 [Büchi Theorem on S1S vs. automata] Let X be a finite set of

boolean variables, and let L be an ω-language over the alphabet ΣX . Then, L is

ω-regular iff there exists an S1S formula ϕ such that Lϕ = L.

Remark 13.9 [Complexity of S1S] The satisfiability and the validity problems
for S1S are of nonelementary complexity.

First-order fragment of S1S

The logic S1S
fo consists of the fragment of S1S that disallows quantification

over second-order variables. Formally, the set of formulas of S1Sfo is generated
by the grammar

ϕ := p(e) | e < e | ¬ϕ | ϕ ∨ ϕ | ∃i. ϕ,

where i is a first-order variable, p is a second-order variable and e is a term of
S1S. It turns out that the first-order fragment of S1S precisely captures the
expressiveness of Ltl.

Theorem 13.6 [Expressiveness of Ltl] For an ω-language L, there exists an

Ltl formula ϕ with Lϕ = L iff there exists a formula ψ of S1Sfo with Lψ = L.

