
Contents

11 Temporal Liveness Requirements 1

11.1 Fair Structures . 1
11.1.1 ω-Traces . 1
11.1.2 Fair traces . 2

11.2 The Temporal Logic Ctl . 3
11.2.1 Syntax and Semantics of Ctl 4
11.2.2 Ctl Model Checking . 6
11.2.3 Compositionality and Ctl 8

11.3 The µ-Calculus . 8
11.3.1 Syntax and semantics . 9
11.3.2 Expressive Power . 11
11.3.3 Model checking . 22

0

Computer-Aided Verification

c© Rajeev Alur and Thomas A. Henzinger January 20, 2005

Chapter 11

Temporal Liveness

Requirements

Not all liveness requirements of a reactive module can be formulated as a re-
sponse verification problem. In Chapter 5, we studied temporal logics over
observation structures to specify logical safety requirements of a module. Along
the same lines, we now consider temporal logics over observation structures with
fairness constraints to specify logical liveness requirements of a fair module.

11.1 Fair Structures

11.1.1 ω-Traces

A trace of an observation structure is obtained by executing the underlying tran-
sition graph for finitely many steps, and mapping each state to its observation.
Similarly, an ω-trace of an observation structure is obtained by considering an
ω-trajectory of the underlying transition graph, and mapping each state to its
observation.

ω-traces

Let K = (G,A, 〈〈·〉〉) be an observation structure. An ω-trace of K is an ω-
word a over the alphabet A of observations such that there is an ω-trajectory
s of G with a = 〈〈s〉〉. The ω-word a is an initialized w-trace of K if there is
an initialized ω-trajectory s of G with a = 〈〈s〉〉. The ω-language LK of the
observation structure K is the set of initialized ω-traces of K.

Remark 11.1 [Fusion-closure] The ω-language LK of an observation structure
K is not necessarily fusion-closed.

1

Temporal Liveness Requirements 2

We know that the ω-language of a transition graph is safe. What about the ω-
language of an observation structure? Clearly, if a is an ω-trace of an observation
structure K, then every prefix of a is a trace of K. However, to establish that
the set LK contains every limit of LK , we use the fact that the structure is
finitely-branching over observations: for every observation a, there are only
finitely many initial states with observation a, and every state has only finitely
many successors with observation a.

Proposition 11.1 [Limit closure of ω-traces] Let K be an observation struc-

ture. Then, LK = safe(LK).

Proof. Let K = (Σ, σI ,→, A, 〈〈·〉〉) be an observation structure. If a is an
ω-trace then, by definition, for all i ≥ 0, the prefix a0...i is a trace of K. This
establishes LK ⊆ safe(LK).

We wish to prove that every limit of LK is an ω-trace of K. Consider an ω-
word a over the set of observations of K, and suppose for all i ≥ 0, a0...i is an
initialized trace of K. Let us define a transition graph H . The states of H are
pairs of the form (s, i), for a state s of K and a natural number i, such that
〈〈s〉〉 = ai. The state (s, i) is an initial state of H if s is an initial state of K
and i = 0. The transition graph H has a transition from the state (s, i) to the
state (t, j) if there is a transition from s to t in K and j = i + 1. The graph
H has finitely many initial states, and each state has finitely many successors.
For every i ≥ 0, a0...i is a trace of K, and hence, there exists a trajectory
s0...i of K with 〈〈sj〉〉 = aj for 0 ≤ j ≤ i. Hence, for every i ≥ 0, there is a
trajectory of H of length i. From König’s lemma, the graph H has an infinite
path: (s0, 0)(s1, 1)(s2, 2) · · · The corresponding ω-word s is an ω-trajectory of
K, and 〈〈s〉〉 = a is an ω-trace of K.

Since a safe language is completely characterized by the set of its prefixes, the
next theorem follows.

Theorem 11.1 [Language inclusion] For two observation structuresK1 and K2,

LK1
⊆ LK2

iff LK1
⊆ LK2

. For two reactive modules P1 and P2, LP1
⊆ LP2

iff

LP1
⊆ LP2

.

11.1.2 Fair traces

A fairness constraint and a fairness assumption for an observation structure is
a fairness constraint and a fairness assumption for the underlying transition
graph. Fair structures are obtained from observation structures by adding fair-
ness assumptions.

Fair structure

A fair structure K = (K,F) consists of an observation structure K and a
fairness assumption F for K.

Temporal Liveness Requirements 3

If all the fairness constraints in F are weak, then (K,F) is a weakly-fair struc-
ture.

Fair traces of a fair structure are obtained from fair trajectories by projecting
states to observations.

Fair trace

Let K be a fair structure with observations A and observation function 〈〈·〉〉.
An ω-word a is a fair trace of K if there exists a fair trajectory s of K such
that a = 〈〈s〉〉. An ω-word a is an initialized fair trace of K if there exists
an initialized fair trajectory s of K such that a = 〈〈s〉〉. The fair language

LK of K the set of initialized fair traces of K.

Exercise 11.1 {T3} [Fair traces] Show that the set of fair initialized traces of
a fair structure is not necessarily the intersection of the set of fair traces and
the set of initialized ω-traces.

In Chapter 11, we will study fair structures as a specification formalism for fair
languages.

The fair structure of a fair module

Every reactive module P defines the observation structure KP . The fair struc-
ture of a fair module (P,WeakF P ,StrongFP) is obtained from the observation
structure KP by adding all the fairness constraints corresponding to the decla-
ration of weak and strong fair update choices.

Fair structure of a fair module

The fair module P defines the fair structure KP = (KP , FP).

Observe that if P has only weak-fairness constraints, then the corresponding
fair structure KP is also weakly fair.

11.2 The Temporal Logic Ctl

We specify requirements of fair modules using fair state logics. The formulas of
fair state logics are interpreted over the states of fair structures, and may refer
to the infinite behavior of fair structures. The satisfaction relation of a fair state
logic defines, for each formula φ and each fair φ-structure K, the characteristic
region [[φ]]K. We start by extending Stl to a fair state logic called Ctl.

Remark 11.2 [State logics vs. Fair state logics] Every state logic is a fair state
logic. For every formula φ of a state logic and a fair structure K = (K,F), the
characteristic regions [[φ]]K and [[φ]]K coincide. Every fair state logic is also a
state logic: for a formula φ of a fair state logic, an observation structure K, and
a state s of K, s |=K φ iff s |=(K,∅) φ.

Temporal Liveness Requirements 4

11.2.1 Syntax and Semantics of Ctl

The fair state logic Ctl is obtained from the state logic Stl by adding the
unary temporal connective possibly-always, written ∃2. Consider a state s of a
fair structure K, and let p be an observation predicate of K. The state s satisfies
the formula ∃2p if there is a source-s fair trajectory all of whose states satisfy p.
In other words, the formula ∃2p asserts that it is possible to execute infinitely
many rounds in a fair fashion so that p is satisfied at every step.

Computation tree logic

The formulas of Ctl are defined inductively by the grammar

φ ::= p | φ ∨ φ | ¬φ | ∃© φ | ∃2φ | φ∃Uφ

for atomic formulas p. For a Ctl formula φ, if K = (K,F) is a fair φ-
structure, and s is a state of K, then

s |=K ∃2φ iff there is an source-s fair trajectory s of K
such that for all i ≥ 0, si |=K φ.

The interpretation of the temporal connectives ∃© and ∃U is the same as in Stl:
a state s satisfies the possibly-next formula ∃© p if some successor of s satisfies
p; a state s satisfies the possibly-until formula p ∃U q if there exists a source-s
trajectory s0...m such that sm satisfies q and si satisfies p for all 0 ≤ i < m. The
temporal connectives ∀©, ∃3, ∀2, and ∀W are defined from ∃© and ∃U as in
Stl. In addition, we define the following temporal connectives in Ctl:

Inevitably ∀3φ for ¬∃2¬φ;
Inevitably-until ψ∀Uφ for ψ∀Wφ ∧ ∀3φ;
Possibly-waiting-for ψ∃Wφ for ψ∃Uφ ∨ ∃2ψ.

The modality ∀3 is the dual of ∃2: a state s of the fair structure K satisfies
the Ctl formula ∀3 p if every source-s fair ω-trajectory contains a p-state.

Exercise 11.2 {T2} [Inevitably-until connective] Let φ and ψ be two Ctl for-
mulas, let K be a (φ, ψ)-structure, and let s be a state of K. Show that
s |=K φ ∀U ψ iff for all source-s fair ω-trajectories s of K, there exists a po-
sition m ≥ 0 such that (1) sm |=K ψ and (2) for all 0 ≤ i < m, si |=K φ.

Remark 11.3 [Fair emptiness] The fair-emptiness problem is a special case of
Ctl model checking: for a fair structure K, the answer to the fair emptiness
problem K is Yes iff s |=K ∃2true for some initial state s of K.

Response verification problem is also a special case of Ctl verification:

Temporal Liveness Requirements 5

Proposition 11.2 [Response verification in Ctl] Let P be a fair module and

let p and q be two observation predicates of P. Then, p ;P q iff P |= ∀2(p →
∀3 q).

Remark 11.4 [Recurrence verification] Recurrence verification is also a special
case of Ctl verification: The observation predicate p is a recurrent of a fair
structure K if K |= ∀2 ∀3 p.

Example 11.1 [Mutual exclusion] For a mutual-exclusion protocol with weak
fairness, the deadlock-freedom requirement asserts that if a process requests the
critical section, then some process is eventually in the critical section:

φdf : ∀2((pc1 = reqC ∨ pc2 = reqC) → ∀3(pc1 = inC ∨ pc2 = inC))

The starvation-freedom requirement asserts that if a process requests the critical
section, then that process eventually enters the critical section:

φsf : ∀2((pc1 = reqC → ∀3pc1 = inC) ∧ (pc2 = reqC → ∀3pc2 = inC)).

The fair module FairPete satisfies both φdf and φsf . It also satisfies the stronger
until-requirement:

∀2

(pc1 = reqC → (pc1 = reqC)∀U(pc1 = inC))
∧

(pc2 = reqC → (pc2 = reqC)∀U(pc2 = inC))

 .

Exercise 11.3 {T2} [Ctl connectives] The Ctl formula φ implies the Ctl

formula ψ if [[φ]]G ⊆ [[ψ]]G for all fair (φ, ψ)-structures G (i.e., the Ctl formula
φ → ψ is valid). Let p be an atomic state formula. Group the 16 Ctl formulas
of the form Q1T1Q2T2 p, where Q1, Q2 ∈ {∀, ∃} and T1, T2 ∈ {2,3}, into eight
pairs (φ, ψ) (any such grouping is fine). Prove or disprove that φ implies ψ for
each of your pairs.

Exercise 11.4 {T3} [Interdefinability of temporal connectives] Assuming that
a fair state logic contains the temporal connective ∃U , show that each of the
connectives ∃2, ∀3, ∀U , and ∃W can be used to define the remaining three.

Every Stl formula is also a Ctl formula. For a Stl formula φ and a fair struc-
ture K = (K,F), [[φ]]K = [[φ]]K . This implies that to check Stl specifications of
fair structures we can ignore the fairness constraints.

Temporal Liveness Requirements 6

Remark 11.5 [Fair semantics of Stl] Note that while interpreting Stl formu-
las over states of fair structures, we have retained the original semantics of Stl

over observation structures. To account for the fairness constraints, suppose we
redefine the semantics of Stl over fair structures the following way. The state s
of a fair structure K satisfies the possibly-until formula φ ∃U ψ if there exists a
source-s fair trajectory s of K such that for some m ≥ 0, sm |=K ψ and si |=K φ

for 0 ≤ i < m. For machine-closed fair structures K, since every finite trajectory
is a prefix of some fair ω-trajectory, this new definition of ∃U coincides with the
old definition.

11.2.2 Ctl Model Checking

In the model-checking problem for Ctl, we are given a Ctl formula φ and
a fair φ-structure K. To compute the characteristic region [[φ]]K , we proceed
inductively on the structure of the formula φ, by first finding the characteristic
regions for the subformulas of φ. For this purpose, we first compute the the set
Sub(φ) of subformulas of φ. The function Sub is extended to include the new
connective ∃2:

Sub(∃2ψ) = {∃2ψ} ∪ Sub(ψ).

The function OrderedSub is also redefined so that it accepts a Ctl formula φ as
input, and returns a queue with the formulas in Sub(φ) such that if ψ ∈ Sub(χ)
and χ ∈ Sub(φ), then ψ precedes χ in OrderedSub(φ). As in case of Stl, the
Ctl formula φ has at most |φ| subformulas.

For the enumerative algorithm, assume that the atomic formulas of φ are propo-
sitions, and the fair structure K is finite. The algorithm computes, for each state
s of K, the set λ(s) ⊆ Sub(φ) of subformulas of φ that are satisfied by the state s.
Initially, λ(s) is empty for each state s. The algorithm considers each subfor-
mula ψ, in the order given by OrderedSub(φ), and decides, for every state s,
whether s satisfies ψ, and updates λ(s) accordingly (see Algorithm 5.1 for enu-
merative Stl model checking). The structure of ψ leads to various cases. The
cases corresponding to propositions, logical connectives, and the temporal con-
nectives ∃© and ∃U are handled as in the case of Stl. The case when ψ = ∃2χ

is reduced to the fair-region problem.

The fair-region problem

The fair-region problem is to determine which states belong to the fair ω-
trajectories of a fair graph. Let G be a transition graph, and let F be a fairness
assumption for G. The F -fair region σF of G consists of precisely the states s
such that there is a source-s F -fair ω-trajectory of G.

An instance of the fair-region problem is a fair graph (G,F). The answer
to the fair-region problem (G,F) is the F -fair region σF of G.

Temporal Liveness Requirements 7

Remark 11.6 [Fair-region problem vs. fair-emptiness problem] For a fair graph
G, the answer to the fair-emptiness problem G is Yes iff σI ∩ σF is nonempty.

For Ctl model checking, we need to construct the characteristic region [[∃2χ]]K
from the characteristic region [[χ]]K for the fair structureK = (Σ, σI ,→, A, 〈〈·〉〉, F).
Let Gχ be the transition graph with the state space [[χ]]K and the transition re-
lation → restricted to [[χ]]K. The region [[∃2χ]]K is precisely the answer to the
fair-region problem (Gχ, F).

To solve the fair-region problem (G,F), observe that a state s belongs to the
fair region σF iff there exists a F -fair strongly connected component σ of G
such that post∗(s) ∩ σ is nonempty. Thus,

σF =
⋃

{σ | σ is a F -fair component of G}. pre∗(σ).

Hence, σF can be by first computing the F -fair strongly connected components
of G using Algorithm 9.2, and then computing the region σF by a depth-first
search. IfG has n states andm transitions, and F contains ` fairness constraints,
then the overall time-complexity is O((n +m) · `2).

Exercise 11.5 {P3} [Fair-region problem] Write an enumerative algorithm to
solve the fair-region problem G using an on-the-fly representation of the fair
graph.

Theorem 11.2 [Model checking of Ctl] Let K = (K,F) be a fair structure,

and let φ be an Ctl formula. Suppose K has n states and m transitions, and

F has ` fairness constraints. The model-checking problem (K, φ) can be solved

in O((n+m) · `2 · |φ|) time.

The algorithms of Section 9.3 that employ nested depth-first search can be used
to solve the fair-region problem when the fairness assumption is of a restricted
form. When the fairness assumption F contains only weak constraints, the
Ctl model-checking problem ((K,F), φ) can be solved in in time linear in the
number of fairness constraints.

Theorem 11.3 [Model checking of Ctl for weak-fair structures] Let K =
(K,F) be a weak-fair structure, and let φ be an Ctl formula. Suppose K

has n states and m transitions, and F has ` weak-fairness constraints. The

model-checking problem (K, φ) can be solved in O((n+m) · ` · |φ|) time.

In particular, the Ctl model-checking problem (K,φ) can be solved in O((n+
m) · |φ|) time. Thus, the additional complexity of Ctl model checking over Stl

model checking is not due to the introduction of ∃2 connective in the logic, but
due to the introduction of fairness constraints in the model.

Temporal Liveness Requirements 8

To solve the Ctl-verification problem (P , φ), for a finite fair module P and
a Ctl specification φ, we can first construct the fair structure KP , and then
employ the model checking algorithm. As usual, since the structure KP may be
exponentially larger than the module description, this results in an exponential
algorithm. As in case of Stl, the Ctl verification problem of determining
whether a fair module satisfies a Ctl-formula is Pspace-complete.

11.2.3 Compositionality and Ctl

As in Stl, satisfaction of existential Ctl-formulas is not preserved under par-
allel composition.

Exercise 11.6 {T3} [Non-compositionality of Ctl] Give an example of a fair
module P ‖Q and an observation predicate p such that the answer to the veri-
fication problem (P , ∃2p) is Yes, while the answer to (P ‖Q, ∃2p) is No.

As in case on Stl, if we restrict ourselves only to the universal formulas, then the
compositionality principle holds. Let ∀Ctl be the fragment of Ctl generated
by the grammar

φ ::= p | ¬p | φ ∧ φ | φ ∨ φ | ∀© φ | φ∀Uφ | ∀2φ

The logic ∀Ctl is not closed under negation. The parallel composition operation
on fair modules ensures that the projection of a fair trajectory of a compound
module onto the variables of a component is a fair trajectory of that component.
This implies that the compositionality principle holds for ∀Ctl.

Proposition 11.3 [Compositionality for ∀Ctl] If the fair module P satisfies

the ∀Ctl-formula φ, then for every fair module Q that is compatible with P,

the compound fair module P ‖Q satisfies φ.

Exercise 11.7 {T3} [Compositionality of ∀Ctl] Prove Proposition 11.3.

11.3 The µ-Calculus

We now introduce a state logic, called µ-calculus , that is more expressive than
Ctl. Before we present syntax and semantics of µ-calculus, two points must
be noted. First, comprehending µ-calculus formulas requires considerable ex-
pertise, and hence, it is not a convenient specification language for writing re-
quirements. On the other hand, its semantics immediately suggests a symbolic
procedure for model checking. The role of of µ-calculus, then, is as an inter-
mediate language which can be analyzed by symbolic algorithms. Second, the
syntax of µ-calculus is expressive enough to specify fairness constraints. Conse-
quently, we consider µ-calculus as a state logic, and interpret its formulas over
states of observation structures.

Temporal Liveness Requirements 9

11.3.1 Syntax and semantics

In µ-calculus, properties are expressed as fixpoints of functions that map regions
to regions. As an example, consider the Stl-formula ∃3p. The characteristic
region [[∃3p]]K consists of all states of the observation structure K from which
a state satisfying p is reachable. Consider the function F∃3p that maps regions
of K to regions of K:

F∃3p(σ) = [[p]]K ∪ preK(σ).

Then, the region [[∃3 p]]K is the least fixpoint of the function F∃3p: it is the
smallest region σ that contains [[p]]K as well as preK(σ). The µ-calculus formula
corresponding to ∃3p is µx. (p ∨ ∃©x). Here, the variable x ranges over regions,
µx. is called the least fixpoint operator, and given a region σ, ∃© σ denotes the
region containing states that have at least one successor in σ.

The dual of the least fixpoint operator is the greatest fixpoint operator νx. As an
example, the characteristic region [[∀2p]]K is the greatest fixpoint of the function
F∀2p that maps regions of K to regions of K:

F∀2p(σ) = [[p]]K ∩ {s | postK(s) ⊆ σ}.

The µ-calculus formula corresponding to ∀2p is νx. (p ∧ ∀© x).

µ-calculus syntax

Let Var be a set of region variables. The formulas of the µ-calculus (Ctµ)
are defined inductively by the grammar

φ ::= p | ¬p | φ1 ∧ φ2 | φ1 ∨ φ2 | ∃© φ | ∀© φ | µx. φ | νx. φ | x,

where p is an atomic formula and x ∈ Var is a region variable.

A Ctµ formula of the form µx. φ is called a µ-formula, and a Ctµ formula of
the form νx. φ is called a ν-formula. A µ-formula or a ν-formula is also called
a fixpoint-formula. The fixpoint operator is like a quantifier in first-order logic.
Every occurrence of a region variable x in a formula is either free or bound, and
if bound, has a unique fixpoint operator that binds it. The Ctµ formula φ is
closed if for all region variables x ∈ Var, each occurrence of x in φ is bound by
a fixpoint operator. The Ctµ formula φ is open if it contains a free occurrence
of a region variable.

The logic Ctµ is a state logic, and its formulas are interpreted over states of
observation structures. As in state logics, for a formula φ of Ctµ, a φ-structure
is an observation structure whose observations give interpretation to the atomic
formulas appearing in φ.

Temporal Liveness Requirements 10

µ-calculus semantics

Let K = (Σ, σI ,→, A, 〈〈·〉〉) be an observation structure. A region environ-

ment E assigns to each region variable x ∈ Var a region σ ⊆ Σ. Given a
state s ∈ Σ and a region environment E,

s |=K,E p iff 〈〈s〉〉 |= p;
s |=K,E ¬p iff 〈〈s〉〉 |= ¬p;
s |=K,E φ1 ∧ φ2 iff s |=K,E φ1 and s |=K,E φ2;
s |=K,E φ1 ∨ φ2 iff s |=K,E φ1 or s |=K,E φ2;
s |=K,E ∃© φ iff for some state t ∈ postK(s), t |=K,E φ;
s |=K,E ∀© φ iff for all states t ∈ postK(s), t |=K,E φ;

s |=K,E µx. φ iff for all fixpoints σ of Fx,φ
K,E, s ∈ σ

s |=K,E νx. φ iff for some fixpoint σ of Fx,φ
K,E, s ∈ σ

s |=K,E x iff s ∈ E(x).

The function Fx,φ
K,E maps regions to regions: for all regions σ ⊆ Σ and all

states s ∈ Σ,

s ∈ Fx,φ
K,E(σ) iff s |=K,E[x:=σ] φ.

From the following proposition it follows by the Knaster-Tarski fixpoint theorem
that the function Fx,φ

K,E has a least fixpoint as well as a greatest fixpoint.

Proposition 11.4 [Monotonicity in µ-calculus] Let φ be a Ctµ formula and

let E be a region environment. The function Fx,φ
K,E is monotonic; that is, σ ⊆ τ

implies Fx,φ
K,E(σ) ⊆ Fx,φ

K,E(τ).

Exercise 11.8 {T3} [Monotonicity in µ-calculus] Prove Proposition 11.4.

Remark 11.7 [Region environments in µ-calculus] Let φ be a Ctµ formula. If
two region environments E and E′ agree on the values of the region variables
that are free in φ, then s |=K,E φ iff s |=K,E′ φ. In particular, for a closed
formula φ, in the definition of the satisfaction relation |=K,E, the value of E is
not important.

A state s ∈ Σ satisfies the closed Ctµ formula φ, written s |=K φ, if s |=K,E φ

for all region environments E. For notational convenience, we admit regions as
formulas of state logics: for all regions σ ⊆ Σ and all states s ∈ Σ, s |=K σ

iff s ∈ σ. Given a region environment E, a Ctµ formula of the form µx. φ, then,
defines the least fixpoint of the function Fφ

K,E : 2Σ → 2Σ that maps each region
σ ⊆ Σ to the region [[φ[x := σ]]]K,E; that is,

[[µx. φ]]K,E =
⋃

κ∈
�

(Fφ
K,E)κ(∅).

Temporal Liveness Requirements 11

Exercise 11.9 {T4} [Continuity in µ-calculus] A transition relation → is finitely
branching iff every state has finitely many successors. Let K be an observation
structure. (1) Prove that the function preK that maps regions of K to regions of
K is

⋂

-continuous iff the transition relation of K is finitely branching. (2) Prove

that the function Fx,φ
K,E is both

⋃

-continuous and
⋂

-continuous if the function
preK is

⋂

-continuous. It follows that finite branching of the transition relation

is both a sufficient and necessary condition for continuity of the functions Fx,φ
K,E.

If the transition relation of K is finitely branching, then the function Fφ
K,E is

⋃

-continuous (Exercise 11.9) and, by the Kleene fixpoint theorem,

[[µx. φ]]K,E =
⋃

i∈ �
(Fφ

K,E)i(∅);

that is, the characteristic region [[µx. φ]]K,E is the limit of the infinite approxi-

mation sequence ∅, Fφ
K,E(∅), Fφ

K,E(Fφ
K,E(∅)), etc. We will use this observation

to compute the characteristic regions of Ctµ formulas. For example,

[[µx. (p ∨ ∃© x)]] = [[false]] ∪ [[p]] ∪ [[∃© p]] ∪ [[∃© ∃© p]] ∪ · · ·

Similarly, a Ctµ formula of the form νx. φ, then, defines the greatest fixpoint
of the function Fφ

K,E:

[[νx. φ]]K,E =
⋂

κ∈
�

(Fφ
K,E)κ(Σ).

If the transition relation of K is finitely branching, then the function Fφ
K,E is

⋂

-
continuous (Exercise 11.9) and the characteristic region [[νx. φ]]K,E is the limit

of the infinite approximation sequence Σ, Fφ
K,E(Σ), Fφ

K,E(Fφ
K,E(Σ)), etc. For

example,

[[νx. (p ∧ ∀© x)]] = [[true]] ∩ [[p]] ∩ [[∀© p]] ∩ [[∀© ∀© p]] ∩ · · ·

11.3.2 Expressive Power

Alternation depth

For a Ctµ formula φ, its nesting depth is the the length of the longest chain
of fixpoint-subformulas of φ that are nested in one another. The alternation

depth, on the other hand, is computed by counting the number of alternations
between µ-formulas and ν-formulas along chains of nested fixpoint-subformulas.
The alternation depth is a better measure of the complexity of Ctµ formulas.

Temporal Liveness Requirements 12

Alternation depth

The alternation depth ad(φ) of a Ctµ formula φ is defined inductively: If
φ is not a fixpoint-formula then,

ad(φ) = max{ad(ψ) | ψ is a fixpoint-subformula of φ};

else if φ = µx. ψ then

ad(φ) = max{1, ad(ψ), 1 + max{ad(χ) | χ is open ν-subformula of ψ}};

else if φ = νx. ψ then

ad(φ) = max{1, ad(ψ), 1 + max{ad(χ) | χ is open µ-subformula of ψ}}.

For every integer k ≥ 0, the logic Ctµk consists of all Ctµ formulas φ with
ad(φ) ≤ k. The Ctµ formula φ is said to be alternation-free if ad(φ) ≤ 1,
and the logic Ctµ1 is called alternation-free µ-calculus.

Remark 11.8 [Alternation depth] Alternation depth of a Ctµ formula φ is
the maximum integer k ≥ 0 such that there exists a sequence φ1φ2 . . . φk of
fixpoint-formulas such that (1) φ1 is a subformula of φ, (2) for each 1 ≤ j < k,
the formula φj+1 is a subformula of φj , (3) for 2 ≤ j ≤ k, the fixpoint-formula
φj is open, and (4) for each 1 ≤ j < k, the types of φj and φj+1 are different:
φj is a µ-formula iff φj+1 is a ν-formula.

Example 11.2 [Alternation depth] The definition of the alternation-depth is
illustrated by the following examples

ad(µx. p ∨ ∃© x) = 1
ad(µx. ((νy. p ∧ ∀© y) ∨ ∃© x)) = 1
ad(νx. (p ∧ ∃© νy. (q ∧ ∀© y ∨ ∃© x)) = 1
ad(νx. µy. ((p ∧ x) ∨ ∃© y)) = 2

Note that the nesting depth of the first formula is 1, but for all the rest, the
nesting depth is 2.

Closure under negation

While the syntax of the logic Ctµ does not admit negation, it is effectively
closed under negation because every operator has its dual within the logic.

Exercise 11.10 {T3} [Duality of least and greatest fixpoint operators] Let B
be a boolean algebra and let F : B → B be a monotonic function. We write µF
for the least fixpoint of F and F¬¬ for the function that maps each x ∈ B to
¬F(¬x). Prove that ¬µF¬¬ is the greatest fixpoint of F .

Temporal Liveness Requirements 13

Proposition 11.5 [Closure under negation] Let K be an observation structure,

and let φ be a closed Ctµ formula. Then, there exists a Ctµ formula ψ such

that for every state s of K, s |= φ iff s 6|= ψ. Furthermore, ad(φ) = ad(ψ).

Proof. The proof uses the fact that the logical connectives ∧ and ∨ are duals
of each other, the temporal connectives ∃© and ∀© are duals of each other, and
the fixpoint operators µ and ν are duals of each other. Specifically, define the
function f that maps every Ctµ formula to another Ctµ formula. The function
f is defined inductively:

f(p) = ¬p; f(¬p) = p;
f(φ1 ∧ φ2) = f(φ1) ∨ f(φ2); f(φ1 ∨ φ2) = f(φ1) ∧ f(φ2);
f(∃© φ) = ∀© f(φ); f(∀© φ) = ∃© f(φ);
f(µx. φ) = νx. f(φ); f(νx. φ) = µx. f(φ); f(x) = x.

We prove that for every state s of an observation structure K, and a region
environment E, s |=K,E φ iff s 6|=K,E f(φ). This is proved by induction on the
structure of φ.

Remark 11.9 [Alternative definition of Ctµ syntax] The syntax of Ctµ can
alternatively be defined by the following clauses: (1) every atomic formula is
a Ctµ formula, (2) every region variable is a Ctµ formula, (3) if φ is a Ctµ

formula, then so are ¬φ and ∃©φ, (4) if φ1 and φ2 are Ctµ formulas then so is
φ1 ∨ φ2, and (5) if φ is a Ctµ formula, and x is a region variable that is within
the scope of an even number of negations in φ, then µx. φ is a Ctµ formula.

Alternation-free µ-calculus is as expressive as Ctl

We establish that every Ctl formula is equivalent to an alternation-free Ctµ

formula over observation structures.

Proposition 11.6 [Fixpoint characterization of ∃3] Let K be an observation

structure, and let p be an observation predicate of K. Then, the characteristic

regions [[∃3p]]K and [[µx. (p ∨ ∃© x)]]K are identical.

Proof. Consider the function F∃3p that maps regions of K to regions of K:

F∃3p(σ) = [[p]]K ∪ preK(σ).

Observe that the operator ∃© of Ctµ is same as the function pre , and hence,
[[µx. (p ∨ ∃© x)]]K is the least fixpoint of the function F∃3p. First, we show
that the characteristic region [[∃3p]]K is a fixpoint of the function F∃3p:

[[∃3p]] ⇔ [[p]] ∪ pre([[∃3p]]).

This is established from the definition of the Ctl operator ∃3. Second, we
show that the region [[∃3σ]] is contained in all fixpoints of F∃3p: for all regions
σ ⊆ Σ and all states s ∈ Σ,

Temporal Liveness Requirements 14

if σ = [[p]] ∪ pre(σ) and s |= ∃3p, then s ∈ σ.

So assume that σ = [[p]] ∪ pre(σ) and that there is a source-s trajectory s0..n of
K such that sn |= p. Then sn ∈ σ, and by backward induction on s0..n, si ∈ σ

for all 0 ≤ i ≤ n.

Exercise 11.11 {T2} [µ-calculus vs. Ctl] Which Ctl formula is equivalent
to the Ctµ formula µx. ∃© (x ∨ p)?

Remark 11.10 [Fixpoint characterization of ∃3] Let φ be a Ctµ formula and
ψ be a Ctl formula. If φ and ψ are equivalent, then so are the formulas
µx. (φ ∨ ∃© x) and ∃3ψ.

To obtain fixpoint characterization of the possibly-until connective ∃U , observe
the following equivalence:

(φ ∃U ψ) ↔ ψ ∨ (φ ∧ (φ ∃U ψ).

A state satisfies (φ ∃U ψ) if either it satisfies ψ, or it satisfies φ and has a
successor that is already known to satisfy (φ ∃U ψ). This suggests that ∃U can
be defined as a µ-formula:

Proposition 11.7 [Fixpoint characterization of ∃U] Let φ1 and φ2 be a Ctµ

formulas, and let ψ1 and ψ2 be Ctl formulas. If the formulas φ1 and ψ1 are

equivalent, and the formulas φ2 and ψ2 are equivalent, then so are the formulas

µx. (φ2 ∨ (φ1 ∧ ∃© x)) and ψ1∃Uψ2.

Finally, let us consider the possibly-always connective ∃2. A state all of whose
successors do not satisfy p cannot satisfy ∃2p. A state all of whose successors are
known not to satisfy ∃2p cannot satisfy ∃2p. This suggests a characterization
of ∃2p as a greatest fixpoint: [[∃2p]] is the maximal region each of whose states
satisfies p and has at least one successor satisfying p.

Proposition 11.8 [Fixpoint characterization of ∃2] Let φ be a Ctµ formula

and ψ be a Ctl formula. If φ and ψ are equivalent, then so are the formulas

νx. (φ ∧ ∃© x) and ∃2ψ.

Theorem 11.4 [From Ctl to Ctµ] Every Ctl formula φ is equivalent to an

alternation-free Ctµ formula of length O(|φ|).

Exercise 11.12 {T4} [Correctness of translation from Ctl to Ctµ] Prove Propo-
sitions 11.7 and 11.8, and then, prove Theorem 11.4 using Propositions 11.5,
11.7 and 11.8.

We can define temporal operators in Ctµ:

Temporal Liveness Requirements 15

∃3φ for µx. (φ ∨ ∃© x);
φ1∃Uφ2 for µx. (φ2 ∨ (φ1 ∧ ∃© x));
∃2φ for νx. (φ ∧ ∃© x);
∀3φ for µx. (φ ∨ ∀© x);
∀2φ for νx. (φ ∧ ∀© x);
φ1∀Uφ2 for µx. (φ2 ∨ (φ1 ∧ ∀© x)).

Notice that the Ctµ formula (νx. φ ∨ ∃©x) is equivalent to true, and the Ctµ

formula (µx. φ ∧ ∃© x) is equivalent to false .

Distinguishing power of Ctµ

In Section 5.4 we established that bisimilarity is a fully abstract semantics for
Stl; that is, two bisimilar states satisfy the same set of Stl formulas, and
if two states are not bisimilar then some Stl formula distinguishes between
them. Since (alternation-free) µ-calculus is as expressive as Stl, it follows that
it can distinguish between states that are not bisimilar. Furthermore, µ-calculus
cannot distinguish between bisimilar states.

Proposition 11.9 [Ctµ abstraction] Bisimilarity is an abstract semantics for

Ctµ.

Exercise 11.13 {T4} [Ctµ abstraction] Prove Proposition 11.9.

Thus, the distinguishing powers of a variety of state logics, such as Stl©, Stl,
Ctl, Ctµ, Ctµ1, coincide, and all these logics are more distinguishing than the
structure logic Sal.

Alternation-free Ctµ is more expressive than Ctl

The alternation-free µ-calculus is more expressive than Ctl. There are at least
two types of properties that can be specified in Ctµ1, but not in Ctl. The
first type concerns the inability of Ctl to count, while the second one concerns
inability of Ctl to specify game-like properties.

Proposition 11.10 [Ctl vs. Ctµ1] Let p be a proposition. No Ctl formula

is equivalent to the Ctµ1 formula νx. (p ∧ ∀© ∀© x).

Proof. The formula νx. (p ∧ ∀©∀©x) is satisfied by a state s of an observation
structure K iff for every source-s ω-trajectory s, si |= p for all even numbers i.
Thus, the formula νx. (p ∧ ∀© ∀© x) is equivalent to the Sal formula φeven

(see proof of Theorem 6.2). We already know that no Stl formula is equivalent
to φeven . The same proof can be extended to establish that no Ctl formula is
equivalent to φeven .

Temporal Liveness Requirements 16

Consider an observation structure K with three observations a, b, and c. Con-
sider the following two-player game between a protagonist and an adversary.
The positions of the game is described by a state of K. If the current position s
has observation c, then the protagonist wins the game. Otherwise, the position
of the game is updated to some successor of s. If the observation of s is a, then
the protagonist chooses the successor position, and if the observation of s is b,
then the adversary chooses the successor position. Given an initial position, the
protagonist wins if it has a strategy to force the game to a state with observa-
tion c. Thus, the described game is a standard and-or game, where states with
observations c are winning positions, states with observation a are or-positions
and states with observation b are and-positions. Let σ be the set of winning
initial positions for the protagonist. To get a fixpoint characterization of σ,
observe that (1) all states with observation c belong to σ, (2) for a state s with
observation a, if some successor of s is already known to be winning, then the
protagonist can win from s also, and (3) for a state s with observation b, if all
successors of s are already known to be winning, then the protagonist can win
from s also. Thus, σ is the smallest region that contains [[c]], [[a ∧ ∃© σ]], and
[[b ∧ ∀© σ]]. Thus, the set of winning positions is described by the alternation-
free formula µx. (c∨(a∧∃©x)∨(b∧∀©x)). It turns out that the set of winning
positions cannot be characterized using a Ctl formula.

Proposition 11.11 [Ctl vs. Ctµ1] Let p and q be propositions. No Ctl

formula is equivalent to the Ctµ1 formula µx. (q ∨ (p ∧ ∃©x) ∨ (¬p ∧ ∀©x)).

Fair region for a single Büchi

We turn our attention to characterization of fair regions using µ-calculus. Let
(K,F) be a fair structure. The fair region σF of K consists of states from
which there exists a F -fair ω-trajectory. For now, let us assume that F contains
a single Büchi constraint specified by the state predicate p. Thus, a state s of
K belongs to σF iff there exits a source-s ω-trajectory that contains infinitely
many states that satisfy p. We use the operator 23 to denote infinite repetition:

s |=K ∃23p iff there exists a source-s ω-trajectory s of K such that
si |=K p for infinitely many positions i.

The formula ∃23p can be expressed in Ctµ using nested fixpoints: it is equiv-
alent to the formula νx. µy. ∃© ((x ∧ p) ∨ y), which can also be written as
νx. ∃3

+(x ∧ p). That is, [[∃23p]] is the maximal region σ such that from every
state in σ, some state in σ ∩ [[p]] is reachable in one or more steps. The i-th
approximation in the computation of νx. ∃3

+(x ∧ p) contains all states from
which there exists a trajectory containing i states satisfying p:

[[νx. ∃3
+(x ∧ p)]] = [[true]] ∩ [[∃3

+p]] ∩ [[∃3
+(p ∧ ∃3

+p)]] ∩ · · ·

Temporal Liveness Requirements 17

Proposition 11.12 [Fixpoint characterization of ∃23] The Ctµ formula νx. µy. ∃©
((x ∧ p) ∨ y) is equivalent to ∃23p.

Proof. Let K be an observation structure. Consider the function F∃23p that
maps regions of K to regions of K:

F∃23p(σ) = pre+(σ ∩ [[p]]).

It suffices to show that the region [[∃23p]] is the maximal fixpoint of the function
F∃23p. First, we show that [[∃23p]] is a fixpoint of F∃23p:

[[∃23p]] ⇔ pre+([[∃23p]] ∩ [[p]]).

To establish this, for all states s, there is a source-s p-fair trajectory iff there
exists a state t such that (i) t is reachable from s in one or more steps (i.e. s ∈
pre+(t)), (ii) t satisfies p, and (iii) there is a source-t p-fair trajectory. Second,
we need to establish that every fixpoint of F∃23p is contained in [[∃23p]]: for
all regions σ and all states s,

if σ = pre+(σ ∩ [[p]]) and s ∈ σ then s |= ∃23p.

So assume that σ = pre+(σ ∩ [[p]]) and s ∈ σ. We construct an infinite sequence
of states s0s1 . . . as follows. Let s0 = s. Given si ∈ σ, choose si+1 such
that si+1 ∈ σ and si+1 |= p and si+1 ∈ post+(si) (such a state exists since
σ = pre+(σ∩[[p]])). It follows that there exists a source-s ω-trajectory containing
infinitely many states satisfying p.

Exercise 11.14 {T2} [∃23 in µ-calculus] Is the formula νx. ∃3(p ∧ x) equiv-
alent to ∃23p? Is the formula νx. ∃3(p ∧ ∃© x) equivalent to ∃23p?

Exercise 11.15 {T2} [Fixpoint characterization of ∃2p in Büchi structures]
Let K = (K,F) be a fair structure such that F contains a single Büchi constraint
specified by the predicate q. Write a Ctµ formula φ such that [[φ]]K equals
[[∃2p]]K. That is, s |=K φ iff there is a source-s F -fair ω-trajectory s with
si |= p for all i ≥ 0.

Exercise 11.16 {T3} [∃32 in µ-calculus] Given a state s of an observation
structure K, and a state predicate p, define s |=K ∃32p iff there exist a source-
s ω-trajectory s and an integer i ≥ 0 such that sj |=K p for all j ≥ i. Write
Ctµ formula that is equivalent to ∃32p.

Now let us consider the case when the fairness assumption contains a single
weak-fairness constraint specified by an action α. Suppose the action α is spec-
ified by the action predicate p ∧ q′; that is, s

α
→t iff s |= p and t |= q. We wish

to characterize the fair region by a Ctµ formula. A state s of K satisfies the
Ctµ fromula νx. ∃3(p ∧ ∃© (q ∧ x)) iff there is a source-s ω-trajectory s such

Temporal Liveness Requirements 18

that for infinitely many positions i, si |= p and si+1 |= q, that is, iff there is
a source-s α-fair trajectory. This leads to the characterization of fair regions
when fairness contains a single weak constraint. In general, the action α will be
specified using a disjunction ∨ 0 ≤ i ≤ k. pi ∧ q′i: s

α
→t iff for some 0 ≤ i ≤ k,

s |= pi and t |= qi.

Proposition 11.13 [Single weak constraint in Ctµ] Let K = (K,F) be a fair

structure where F contains a single weak constraint α. Let p0, . . . pk and q0 . . . qk
be state predicates of K such that α = [[∨ 0 ≤ i ≤ k. pi ∧ q′i]]K . Then, the fair

region of K equals

[[νx. ∃3 ∨ 0 ≤ i ≤ k. (pi ∧ ∃© (qi ∧ x))]]K .

Exercise 11.17 {T3} [Single weak constraint in µ-calculus] Prove Proposition 11.13.

Exercise 11.18 {T3} [Multiple Büchi constraints] Consider a Büchi structure
(K,F) where F contains k Büchi constraints specified by predicates p1, . . . pk.
Show that the fair region is characterized by the Ctµ formula

νx. ∃3
+(p1 ∧ ∃3

+(p2 ∧ · · · ∧ ∃3
+(pk ∧ x) · · ·)).

Consider a module P , and let a be an update choice of an atom U of P . The
availability action avail a of the choice a is be described by a predicate qavaila

over
readXU ∪ awaitX ′

U . The execution action execa of the choice a is described by a
predicate qexeca

over readXU ∪ awaitX ′
U ∪ ctrX ′

U . The weak-fairness constraint
of α is, then, described by the predicate qexeca

∨ ¬qavaila
. This predicate can

be rewritten to a form required by Proposition 11.13.

Example 11.3 [Fairness constraints for mutual exclusion] Recall the fair mod-
ule FairPete from Figure 8.5. The module has four weak-fairness constraints
specified by the choices α1, β1, α2, and β2. Let us just consider the choice α1

The weak-fairness constraint corresponding to the update choice α1 is specified
by the action execα1

∪ (→ \availα1
). The execution action execα1

is specified
by the predicate pc1 = inC ∧ pc′1 = outC , and the availability action avail α1

is specified by the predicate pc1 = inC . It follows that the fairness constraint
corresponding to the choice α1 is the disjunction

(pc1 = inC ∧ pc′1 = outC) ∨ (pc1 6= inC).

The corresponding fair region, then, is expressed by the Ctµ formula

νx. ∃3 [(pc1 = inC ∧ ∃© (pc1 = outC ∧ x)) ∨ (pc1 6= inC ∧ ∃© x)].

Temporal Liveness Requirements 19

While the operator ∃23 is specifiable in Ctµ2, it is not specifiable in Ctl.

Proposition 11.14 [Ctl cannot express ∃23] There is no Ctl formula that

is equivalent to ∃23p.

Proof. Suppose there is a Ctl formula φ such that for every structure K,
[[∃23p]]K equals [[φ]]K . Suppose the length of φ is k. Consider the observation
structure of Figure 11.1. States that satisfy the atomic formula p are labeled
with p. We first prove the following lemma.

Lemma A. For every Ctl formula ψ, for all integers |ψ| − 1 ≤ i ≤ j ≤ k,
si |= ψ iff sj |= ψ and ti |= ψ iff tj |= ψ.

Proof of Lemma A. The proof is by induction on the structure of the formula
ψ. For 0 ≤ i ≤ k, all the states si satisfy the same atomic formulas, and so
do all the states ti. Hence, the lemma holds if ψ is an atomic formula. When
ψ = ¬χ, or when ψ = χ1 ∨ χ2, the lemma follows from induction.

Case ψ = ∃© χ. For 1 ≤ i ≤ k, si |= ψ iff ti−1 |= χ, and ti |= ψ iff ti |= χ or
si−1 |= χ. For |ψ| − 1 ≤ i ≤ j ≤ k, i ≥ 1 and |χ| ≤ i − 1 ≤ j − 1 ≤ k. By
induction, ti−1 |= χ iff tj−1 |= χ; si−1 |= χ iff sj−1 |= χ; and ti |= χ iff tj |= χ.

Case ψ = ∃2χ. For 1 ≤ i ≤ k, ti |= ψ iff ti |= χ, and si |= ψ iff si |= χ and
ti−1 |= χ. Now we can proceed as in the previous case.

Case ψ = χ1∃Uχ2. Left as an exercise.

Corollary B. For every subformula ψ of φ, sk |= ψ iff sk−1 |= ψ.

The next lemma implies that sk |= φ iff u |= φ. This yields a contradiction,
because sk 6|= ∃23p, but u |= ∃23p.

Lemma C. For every subformula ψ of φ, sk |= ψ iff u |= ψ, and tk |= ψ iff
v |= ψ.

Proof of Lemma C. The proof is by induction on the structure of the formula
ψ. When ψ is an atomic formula, the lemma is immediate as the states sk and
u, and states tk and v have identical observations. When ψ = ¬χ, or when
ψ = χ1 ∨ χ2, the lemma follows from induction.

Case ψ = ∀© χ. sk |= ψ iff tk |= χ iff, by induction, v |= χ iff u |= ψ. tk |= ψ

iff both tk and sk−1 satisfy χ iff, by Corollary B, all of sk, tk, and sk−1 satisfy
χ iff, by induction, all of u, v, and sk−1 satisfy χ iff v |= ψ.

Case ψ = ∃2χ. sk |= ψ iff both sk and tk satisfy χ iff, by induction, both u and
v satisfy χ iff u |= ψ. tk |= ψ iff tk |= χ iff, by induction, v |= χ iff v |= ψ.

Case ψ = χ1∃Uχ2. Left as an exercise.

Temporal Liveness Requirements 20

p
u v

p
sk tk

p
s0

t0
sk−1 tk−1

p

Figure 11.1: ∃23 is not expressible in Ctl

Exercise 11.19 {T4} [Alternation-free µ-calculus cannot express ∃23] Prove
that no formula of Ctµ1 is equivalent to ∃23p.

Remark 11.11 [Hierarchy of expressiveness] For every integer i ≥ 0, the frag-
ment Ctµi+1 is more expressive than the fragment Ctµi. Thus, the expressive-
ness of Ctµ strictly increases with increasing alternation depth.

Specifying fair regions

Now we turn our attention to strong fairness constraints. Let F be a fairness
assumption for an observation structure K. Suppose each fairness constraint
f ∈ F is a Streett constraint defined by state predicates p and q: an ω-trajectory
s is f -fair iff if it is q-fair or not p-fair.

Exercise 11.20 {T3} [Fixpoint characterization of single Streett constraint]
Consider an observation structure K and two state predicates p and q of K.
Show that a state s of K satisfies the Ctµ formula ∃3(∃2¬p ∨ ∃23q) iff there
exists a source-s (p, q)-fair trajectory of K.

Exercise 11.20 suggests characterization of fair regions when the fairness as-
sumption has a single fairness constraint. It can be generalized to multiple
Streett constraints. Let F be a Streett assumption for an observation struc-
ture K. Then, a state s belongs to the fair region of K iff there exists a state
t ∈ post∗(s), a subset F ′ of F , and a source-t ω-trajectory (1) that is q-fair for
every (p, q) ∈ F ′, and (2) all of whose states satisfy ¬p for every (p, q) ∈ F\F ′.
This suggests a Ctµ formula whose length is exponential in the number of
Streett constraints in F . However, a polynomial translation is possible.

Proposition 11.15 [Emerson-Lei Fixpoint characterization of Streett assump-
tion] Let K be an observation structure, and let F be a Streett assumption for

K. Then, the fair region of (K,F) is the characteristic region of the formula

∃3 νx.
∧

(p, q) ∈ F. [∃© (x∃U(q ∧ x)) ∨ (¬p ∧ ∃© x)].

Temporal Liveness Requirements 21

Proof. Let K be an observation structure. Let F = {(¬p1, q1), . . . (¬pk , qk)}
be a Streett assumption with k Streett constraints. An ω-trajectory s is F -fair
iff for 1 ≤ i ≤ k, either s is qi-fair or it has a suffix containing only pi-states.
This requirement on the ω-trajectory is expressed by the formula

φ =
∧

1 ≤ i ≤ k. (32pi ∨ 23qi).

The fair region is characterized by the formula ∃φ. Define the formula

φ′ =
∧

1 ≤ i ≤ k. (2pi ∨ 23qi).

An ω-trajectory s satisfies φ′ iff for 1 ≤ i ≤ k, either s is qi-fair or contains only
pi-states. A state s satisfies ∃φ′ iff there is source-s ω-trajectory satisfying φ′.
The next two lemmas follow from the definitions of the formulas φ and φ′.

Lemma A. [[∃3∃φ′]] = [[∃φ]].

Lemma B. [[∃3∃φ]] = [[∃φ]].

Now consider the function F that maps regions of K to regions of K:

F(σ) =
∧

1 ≤ i ≤ k. [∃© (σ ∃U(qi ∧ σ)) ∨ (pi ∧ ∃© σ)].

Lemma C. If σ is a fixpoint of F then σ ⊆ [[∃φ]].

Proof of Lemma C. Let σ be a fixpoint of F . Consider s ∈ σ. We will
construct a source-s ω-trajectory that satisfies φ. For every j ≥ 0, we define a
state sj , and a finite trajectory from sj to sj+1 containing only σ-states. Let
s0 = s ∈ σ. Consider sj in σ. Let i be j mod k. Since σ = F(σ), sj satisfies
∃© (σ ∃U(qi ∧ σ)) or pi ∧ ∃© σ. If sj satisfies ∃© (σ ∃U(qi ∧ σ)), then there
exists a source-sj trajectory t0...n with n > 0 containing only σ-states such that
tn |= qi. Choose sj+1 = tn. If sj does not satisfy ∃© (σ ∃U(qi ∧ σ)), then it
must satisfy pi ∧ ∃© σ, and choose sj+1 to be a successor of sj in σ.

Let t be the source-s ω-trajectory obtained by concatenating the finite trajec-
tories from sj to sj+1 defined above. Every state in s belongs to σ. We wish
to establish that t satisfies φ. Consider 1 ≤ i ≤ k. For every n ≥ 0, if si+kn

satisfies ∃© (σ ∃U(qi ∧ σ)) then si+kn+1 satisfies qi. Suppose that there are
infinitely many n such that si+kn satisfies ∃© (σ ∃U(qi ∧ σ)). Then, by con-
struction, t is qi-fair. Otherwise, there exists n ≥ 0 such that si+kn′ does not
satisfy ∃© (σ ∃U(qi ∧ σ)) for n′ ≥ n. Since every state in t satisfies σ, it follows
that there exists n ≥ 0 such that tn′ does not satisfy ∃© (σ ∃U(qi ∧ σ)) for
n′ ≥ n. Since σ is a fixpoint of F , it follows that tn′ satisfies pi ∧ ∃© σ, and
hence, t satisfies 32pi.

Lemma D. [[∃φ′]] ⊆ F([[∃φ′]]).

Proof of Lemma D. Consider a state s ∈ [[∃φ′]]. There exists a source-s ω-
trajectory s such that for 1 ≤ i ≤ k, either s is qi-fair or contains only pi-states.

Temporal Liveness Requirements 22

Every suffix of s satisfies φ′, and hence, sj |= ∃φ′ for all j ≥ 0. We wish to
establish that s satisfies F([[∃φ′]]). Consider 1 ≤ i ≤ k. We need to prove that s
satisfies either ∃© ([[∃φ′]]∃U(qi ∧ [[∃φ′]])) or pi ∧ ∃© [[∃φ′]]. If s is qi-fair, then s1
satisfies [[∃φ′]]∃U(qi ∧ [[∃φ′]]); otherwise s contains only pi-states, and s satisfies
pi ∧ ∃© [[∃φ′]].

Now we proceed to show that ∃φ is equivalent to ∃3 νx.F(x). Suppose s |=
∃3νx.F(x). By Lemma C, if a state satisfies νx.F(x) then it also satisfies ∃φ.
Hence, s |= ∃3∃φ. By Lemma A, s |= ∃φ. Conversely, suppose s |= ∃φ. By
Lemma B, s |= ∃3∃φ′. By Lemma D, [[∃φ′]] is contained in the maximla fixpoint
of F . Hence, s |= ∃3νx.F(x).

Exercise 11.21 {T3} [Fixpoint characterization of fairness assumption] Con-
sider a fair graph (K,F). Every constraint is F is a pair of actions, and suppose
every action α is represented by state predicates p0, . . . pk and q0 . . . qk of K such
that α = [[∨ 0 ≤ i ≤ k. pi ∧ q′i]]K . Given this representation of actions, write a
Ctµ formula that characterizes the faire region of (K,F).

Thus, the fair region of a fair graph can be characterized in µ-calculus using for-
mulas of alternation depth 2. To characterize the region [[∃2p]]K of fair structure,
only a slight modification is required. For instance, for a Streett assumption F ,
the characteristic region [[∃2p]] equals

p ∃U νx. p ∧
∧

(q, r) ∈ F. [∃© (x∃U(r ∧ x)) ∨ (¬q ∧ ∃© x)].

Theorem 11.5 [From Ctl over fair structures to Ctµ] For every Ctl formula

φ and a fair structure K = (K,F), there exists a formula ψ of Ctµ2 such that

[[φ]]K = [[ψ]]K and |ψ| = O(|φ| · |F |).

Let a be an update choice of a module P . The strong-fairness constraint of a
is the pair (availa, execa) of actions. After writing the two actions avail a and
execa in the form stipulated by Exercise 11.21, we can write a Ctµ formula that
characterizes the fair region of the fair module.

11.3.3 Model checking

We are given a closed Ctµ formula φ and φ-structure K, we are required to
check if all the initial states of K satisfy φ. For this purpose, we compute the
characteristic region [[φ]]K . Assume that the fomula φ has no name-conflicts in
the use of region variables: every variable x is quantified by a unique fixpoint
operator.

The characteristic region [[φ]]K can be computed using a recursive function Eval .
The table E stores, for every region variable x, a region E(x) of K. The function
Eval takes a formula ψ as an argument, and returns the set of states satisfying

Temporal Liveness Requirements 23

ψ using the table E to evaluate free variables. If ψ is an atomic formula, the
computation of Eval (ψ) is immediate. If ψ is a conjunction of formulas, then
Eval calls itself recursively on the conjuncts, and returns the intersection of
the results. The case of disjunction is similar. When ψ equals ∃© χ, Eval

calls itself recursively on χ, and returns the set of predecessors of the result.
The evaluation of ∀© χ uses the fact that ∃© and ∀© are duals of each other:
∀© = ¬∃© ¬.

To evaluate a subformula µx. χ, the minimal fixpoint is computed by evaluating
χ repeatedly. In the first iteration, E(x) is chosen to be the empty set, and in
each successive iteration, E(x) is chosen to be the value of Eval (χ) from the
previous iteration. The fixpoint is reached when two consecutive iterations yield
the same result. The number of iterations is bounded by the number of states in
the observation structure. The evaluation of νx. χ is similar, but in this case, in
the first iteration, E(x) is chosen to be the set of all states. A naive implemen-
tation of this recursive scheme would make the depth of recursion equal to the
nesting depth of the formula, resulting in an algorithm with time complexity
O(nk), where k is the nesting depth of the formula. Two improvements are
possible.

First, every closed formula needs to be evaluated just once. For example, con-
sider the formula µx. ψ, where χ is a closed fixpoint subformula of ψ. The invo-
cation Eval (µx. ψ) results in repeated calls to Eval(ψ), and hence to Eval (χ),
each time with a different value of E(x). However, χ is a closed formula, and
its value does not depend on E(x). Consequently, it needs to be evaluated only
once. For this purpose, we use a hash-table Done that stores the results of
evaluating closed formulas. Upon invocation, Eval checks if its input formula
is closed, and if so, whether it has already been evaluated by consulting the
hash-table.

Second, consider the formula µx. φ, where ψ = µy. χ is a disjunct of φ. Let σ0

be the empty set. The first iteration in Eval (µx. φ) calls Eval (φ) with E(x) =
σ0. This involves evaluation of the fixpoint formula ψ, which itself involves an
iterative computation of χ during which the region E(y) keeps growing. Let
τ0 = [[ψ]] and σ1 = [[φ]] with E(x) = σ0. If σ0 is a strict subset of σ1, the
second iteration in Eval (φ) calls Eval(ψ) with E(x) = σ1. This would result in
repeated evaluation of χ starting with E(y) to be the empty set until the value
of E(y) becomes stable. Let τ1 = [[ψ]] with E(x) = σ1. However, due to the
monotonicity property, τ0 ⊆ τ1. This implies that, instead of computing τ1 as
a fixpoint starting with E(y) as empty set, we can speed up the convergence
by choosing E(y) to be τ0 in the first iteration. That is, there is no need to
reinitialize E(y) from τ0 to the empty set when E(x) is updated from σ0 to σ1.
With this improved policy, Eval (χ) is called only n times, rather than n2 times.
The validity of this optimization is captured by the following proposition.

Temporal Liveness Requirements 24

Proposition 11.16 [Optimization in Ctµ model checking] Let K be an ob-

servation structure with finitely branching transition relation, and φ be a Ctµ

formula. Let E and E′ be region environments such that for every region variable

y that is free in µx. φ, E(y) ⊆ E′(y). Then,

[[µx. φ]]E′ =
⋃

i ∈
�
.(Fφ

E′)
i([[µx. φ]]E),

and

[[νx. φ]]E =
⋂

i ∈
�
.(Fφ

E
)i([[νx. φ]]E′).

Proof. We consider the case corresponding to the least fixpoints. Whenever a
function F is

⋃

-continuous, by Kleene fixpoint theorem, its least fixpoint can
be computed by repeatedly applying F to the minimal element–the empty set:
µF =

⋃

i ∈
�
.F i (∅). A slight generalization of the Kleene fixpoint theorem

states that the least fixpoint of F can be computed by repeatedly applying F
to any element that is smaller than the least fixpoint; that is, for any σ ⊆ µF ,
µF =

⋃

i ∈
�
.F i (σ).

If K has a finitely branching transition relation, Fφ
E′ is

⋃

-continuous. hence,

[[µx. φ]]E′ equals
⋃

i ∈
�
. (Fφ

E′)i(σ) for any region σ ⊆ [[µx. φ]]E′ . It suffices
to show that [[µx. φ]]E ⊆ [[µx. φ]]E′ . This can be proved, by induction on the
structure of φ, using the assumption that for every region variable y that is free
in µx. φ, E(y) ⊆ E′(y).

The reinitialization is necessary only when there is a switch in the fixpoint quan-
tifiers. The resulting algorithm is shown in Figure 11.2. When Eval is invoked
on a fixpoint subformula µx. φ, the if the enclosing fixpoint subformula is a ν-
formula, then E(x), together with the variables corresponding to µ-subformulas
of φ that have no enclosing ν-subformula within φ, are initialized to the empty
set. Otherwise, E(x) is left unchanged, and equals the value returned by the
previous invocation of Eval (φ).

The algorithm uses the following new operations:

Closed? : form 7→ � . Given a Ctµ formula ψ, Closed?(ψ) returns true if ψ is
closed.

Switch? : form× form 7→ � . For Ctµ formulas ψ and φ, Switch?(ψ, φ) returns
true iff there exists a formula χ different from ψ such that (1) ψ is a fixpoint
subformula of χ, (2) χ is a fixpoint subformula of φ, (3) there is no formula
χ′ such that χ′ is a fixpoint subformula of χ and ψ is a subformula of χ′,
and (4) the fixpoint-types of ψ and χ are different.

AtomEval . Given a atomic formula p and an observation structureK, AtomEval(p,K)
returns the characteristic region [[p]]K .

Temporal Liveness Requirements 25

Algorithm 11.1 [Symbolic Ctµ model checking]

Input: a closed Ctµ formula φ, and a φ-structure K with a finitely-
branching transition relation.

Output: the answer to the model-checking problem (K,φ).

local Done : table of form × region; E : table of var × region

Σ := AtomEval (true,K);
Done := EmptyTable ; E := EmptyTable ;
if InitReg(K) ⊆ Eval (φ) then return Yes else return No.

function Eval

input ψ: form

if Closed?(ψ) and Done[ψ] 6=⊥ then return Done[ψ] fi;
case ψ = p for an atomic formula p: σ := AtomEval(p,K)
case ψ = ¬p for an atomic formula p: σ := Σ \ AtomEval(p,K)
case ψ = χ1 ∨ χ2: σ := Eval(χ1) ∪ Eval (χ2)
case ψ = χ1 ∧ χ2: σ := Eval(χ1) ∩ Eval (χ2)
case ψ = ∃© χ: σ := PreReg(Eval(χ),K)
case ψ = ∀© χ: σ := Σ \ PreReg(Σ \ Eval(χ),K)
case ψ = µx. χ:

if Switch?(ψ, φ) or Closed?(ψ) then Initialize(ψ,mu) fi;
repeat σ := E(x); E(x) := Eval (χ) until σ = E(x);

case ψ = νx. χ:
if Switch?(ψ, φ) or Closed?(ψ) then Initialize(ψ, nu) fi;
repeat σ := E(x); E(x) := Eval (χ) until σ = E(x);

case ψ = x: σ := E(x);
end case

if Closed?(ψ) then Done[ψ] := σ;
return σ

end.

function Initialize

input ψ: form; m : {mu, nu}
case ψ = p for an atomic formula p:
case ψ = ¬p for an atomic formula p:
case ψ = χ1 ∨ χ2: Initialize(χ1,m); Initialize(χ2,m)
case ψ = χ1 ∧ χ2: Initialize(χ1,m); Initialize(χ2,m)
case ψ = ∃© χ: Initialize(χ,m)
case ψ = ∀© χ: Initialize(χ,m)
case ψ = µx. χ:

if m = mu then E(x) := EmptySet ; Initialize(χ,m) fi

case ψ = νx. χ:
if m = nu then E(x) := Σ; Initialize(χ,m) fi

case ψ = x:
end case

end.

Figure 11.2: Symbolic Ctµ model checking

Temporal Liveness Requirements 26

Theorem 11.6 [Correctness of Ctµ model checking] Given an observation

structureK with finite bisimulation, and a closed Ctµ formula φ, Algorithm 11.1

terminates with the correct answer to the model checking problem (K,φ).

Theorem 11.7 [Complexity of Ctµ model checking] Let K be a finite obser-

vation structure with n states and m transitions, and let φ be a closed Ctµ

formula with length ` and alternation-depth k. Algorithm 11.1 solves the model

checking problem (K,φ) in time O((` · (m+ n))k+1).

If the input structure for Algorithm 11.1 is finite, then all state predicates that
are computed by the algorithm can be viewed as propositional formulas. An im-
plementation of symbolic Ctµ model checking for finite observation structures,
then, may use BDDs. By Theorem 11.5, we can reduce the verification problem
for Ctl over fair modules to the Ctµ verification problem. Consequently, we
have symbolic procedure for Ctl verification.

