
Contents

8 Hierarchical Verification 1

8.1 Implementation of Reactive Modules 1
8.1.1 From Bisimilarity to Implementation 5

8.2 Compositional Reasoning . 7
8.2.1 Compositionality . 7
8.2.2 Assume-guarantee Reasoning 9

8.3 Simulation Relations . 13
8.3.1 Similarity . 18
8.3.2 Universal and existential Stl 19

8.4 Computing Similarity . 21
8.4.1 Enumerative Similarity Checking 21
8.4.2 Symbolic Similarity Checking 26

8.5 Hierarchical Reasoning . 28
8.5.1 Simulation preorder over modules 28
8.5.2 Compositional reasoning 30
8.5.3 Refinement mappings . 30

8.6 Stutter-closed Implementation . 32

0

Computer-Aided Verification

c© Rajeev Alur and Thomas A. Henzinger December 13, 2004

Chapter 8

Hierarchical Verification

In hierarchical design, we construct various models of a system at different levels
of detail. The key verification issue, then, is to check that a detailed model P of
the system conforms with a more abstract model Q. If both P and Q are reactive
modules, then our notion of conformance requires that every finite sequence of
observations a that may result from executing the detailed module P may also
result from executing the more abstract module Q. In this case, we say that the
module P implements the module Q.

8.1 Implementation of Reactive Modules

Given a reactive module P , an initialized trace of P is an initialized trace of
the observation structure KP , and the language LP of the module P is the
language LKP

of the corresponding observation structure. The interaction of a
module P with its environment is completely determined by the set intfXP of
interface variables, the set extlXP of external variables, the awaits dependencies
among the observable variables, and the set LP of traces. Two modules that
agree on these components will interact with other modules in the same way
irrespective of their branching structures. This is illustrated by the following
proposition which asserts that the traces of a compound module are completely
determined by the traces of its components. In particular, if P and Q have
identical observations then LP ‖Q equals LP ∩ LQ.

Proposition 8.1 [Traces of compound modules] Let P and Q be compatible
modules, and let a be a word over the observations of the compound module
P ‖Q. Then, a belongs to the language LP ‖Q iff the projection obsXP [a] belongs
to LP and the projection obsXQ[a] belongs to LQ.

1

Hierarchical Verification 2

Exercise 8.1 {t2} [Traces of compound modules] Prove Proposition 8.1.

This leads to a natural way of comparing two modules.

Implementation

The reactive module P implements the reactive module Q, denoted P �L Q,
if

1. every interface variable of Q is an interface variable of P : intfXQ ⊆
intfXP ,

2. every external variable of Q is an observable variable of P : extlXQ ⊆
obsXP ,

3. for all variables x in obsXQ and y in intfXQ, if y ≺Q x then y ≺P x,
and

4. if a is an initialized trace of P then the projection a[obsXQ] of a onto
the observable variables of Q is an initialized trace of Q.

The two modules P and Q are trace equivalent, denoted P 'L Q, if P �L Q

and Q �L P .

Intuitively, if P �L Q then the module P is as complex as the module Q: P

has possibly more interface and external variables than Q, P has more await
dependencies among its observable variables, and has less traces than Q, and
thus, more constraints on its execution. The superscript L in the implemen-
tation relation �L indicates that this relation is based on the languages of the
modules.

Remark 8.1 [Implementation preorder] The implementation relation �L on
modules is reflexive and transitive.

Example 8.1 [Synchronous versus asynchronous mutual exclusion] The mod-
ule SyncMutex of Figure 1.22 gives the synchronous solution to the mutual
exclusion problem, and the module Pete of Figure 1.23 gives the asynchronous
solution. Both the modules have identical interface variables, no external vari-
ables, and no await dependencies. Verify that every trace of SyncMutex is a
trace of Pete, and thus, SyncMutex �L Pete. However, the two modules are
not trace equivalent. The word

(pc1 = pc2 = outC), (pc1 = reqC , pc2 = outC), (pc1 = pc2 = reqC)

is a trace of Pete, but is not a trace of SyncMutex . Intuitively, the asynchronous
solution is more abstract, and admits more traces.

Hierarchical Verification 3

Example 8.2 [Nondeterministic versus deterministic scheduling] Recall the mod-
ule Scheduler from Figure 1.4 consisting of atoms A3, A4, and A5. Consider
the atom A6

A6: atom controls proc reads task 1, task2

update

[] task1 = 0 ∧ task2 = 0 → proc′ := 0
[] task2 > 0 → proc′ := 2
[] task1 > 0 → proc′ := 1

When both the tasks are pending the atom A6 assigns the processor to one
of them in a nondeterministic fashion. The module NonDetScheduler is like
Scheduler with the atom A5 replaced by the atom A6 (NonDetScheduler no
longer needs the private variable prior). The two modules Scheduler and Non-
DetScheduler have identical interface and external variables, and identical awaits
dependencies among their observable variables. Verify that every trace of Sched-
uler is a trace of NonDetScheduler , but not vice versa. We have, Scheduler �L

NonDetScheduler . The module Scheduler is an implementation of the specifica-
tion NonDetScheduler . The specification only requires that if one of the tasks
is pending, then the processor should be assigned to a pending task, but does
not specify a policy to resolve the contention when both tasks are pending. The
implementation refines the specification by implementing a deterministic policy
using the variable prior .

Example 8.3 [Binary counter specification] Recall the example of the sequen-
tial circuit for three-bit binary counter from Example 1.16. The counter takes
two boolean inputs, represented by the external variables start and inc, for
starting and incrementing the counter. The counter value ranges from 0 to 7,
and is represented by three interface binary variables out0, out1, and out2.
The specification of the counter is the module Sync3BitCounterSpec of Fig-
ure 8.1. The module Sync3BitCounter of Figure 1.19 is a possible implementa-
tion. The correctness of the design Sync3BitCounter with respect to the speci-
fication Sync3BitCounterSpec is expressed by the fact that the two modules are
trace-equivalent.

Exercise 8.2 {P2} [Zero-delay vs. unit-delay vs. buffered vs. lossy squaring]
Recall the definitions of the modules SyncSquare, SyncSquare2 , AsyncSquare,
and LossyAsyncSquare (see Example 1.10, and Example 1.11) all of which com-
pute squares of input numbers. Which pairs of modules among these four mod-
ules are related by the implementation relation �L?

Exercise 8.3 {P2} [Synchronous vs. asynchronous message passing] Consider
the module SyncMsg of Figure 1.25 for synchronous message passing, and the
module AsyncMsg of Figure 1.30 for asynchronous message passing. Does
SyncMsg implement AsyncMsg? Are the two modules trace equivalent?

Hierarchical Verification 4

module Sync3BitCounterSpec is

interface out0, out1, out2

external start , inc
atom controls out0 reads out0 awaits start , inc

update

[] start ′ = 1 → out ′0 := 0
[] start ′ = 0 ∧ inc′ = 1 → out ′0 := ¬out0

atom controls out1 reads out0, out1 awaits start , inc
update

[] start ′ = 1 → out ′1 := 0
[] start ′ = 0 ∧ inc′ = 1 → out ′1 := out0 ⊕ out1

atom controls out2 reads out0, out1, out2 awaits start , inc
update

[] start ′ = 1 → out ′2 := 0
[] start ′ = 0 ∧ inc′ = 1 → out ′2 := (out0 ∧ out1) ⊕ out2

Figure 8.1: Specification of three-bit counter

Composing two modules using parallel composition creates a module that is
more complex than its components, while hiding a variable creates a simpler
module with less number of observable variables.

Proposition 8.2 [Module operations and implementation] (1) For compatible
reactive modules P and Q, P ‖Q �L P . (2) For a variable x and a reactive
module P , P �L hide x in P .

Exercise 8.4 {T1} [Module operations and implementation] Prove Proposi-
tion 8.2.

The implementation problem

The implementation problem asks whether one module implements another
module.

The implementation problem

An instance (P, Q) of the implementation problem consists of two reactive
modules P and Q. The answer to the implementation problem (P, Q) is
Yes if P implements Q, and otherwise No.

Recall that the module P implments the module Q if (1) intfXQ ⊆ intfXP ,
(2) extlXQ ⊆ extlXP , (3) for all x in obsXQ and y in intfXQ, if y ≺Q x then
y ≺P x, and (4) if a is a trace of P then a[obsXQ] is a trace of Q. Checking

Hierarchical Verification 5

first three conditions is easy, and the fourth condition reduces to the language
inclusion problem. Thus, the implementation problem relates to the language-
inclusion problem in the same way in which the invariant-verification problem
relates to the reachability problem, and in which the Stl verification problem
relates to the Stl model-checking problem.

Consider two modules P and Q such that the first three conditions for P to
implement Q are met. Let P ′ = hide (obsXP \obsXQ) in P . Then P ′ and Q

have identical observable variables. The module P implements Q if every trace
of P ′ is also a trace of Q, that is, if the answer to the language-inclusion problem
(KP ′ , KQ) is Yes. The complexity of solving the language-inclusion question
is exponential in its second argument. The next theorem concerning checking
implementation relation between two propositional modules follows.

Theorem 8.1 [The implementation problem] Let P be a propositional module
with k propositional variables and let Q be a propositional module with ` proposi-
tional variables. The propositional implementation problem (P, Q) can be solved

using the language-inclusion algorithm in time O(4k · 22`

).

Remark 8.2 [Space complexity of implementation problem] The propositional
implementation problem (P, Q) is Expspace hard in its second argument. Check-
ing implementation requires searching the product of the observation structure
of P and the determinization of the the observation structure of Q, and can
be performed in space O(k · 2`) if P has k variables and Q has ` variables. It
follows that propositional implementation problem is complete for Expspace.

If Q is an observably-deterministic module, then so is the observation structure
KQ. In this case, the language inclusion question (KP ′ , KQ) can be solved
without determinization.

Theorem 8.2 [Deterministic case of implementation problem] Let P be a propo-
sitional module with k propositional variables and let Q be a propositional observably-
deterministic module with ` propositional variables. The propositional imple-
mentation problem (P, Q) can be solved in time O(4k+`).

Remark 8.3 [Deterministic case of space complexity of implementation proble
] If Q is observably-deterministic, then the propositional implementation prob-
lem (P, Q) is Pspace-complete.

8.1.1 From Bisimilarity to Implementation

Given two observation structures K1 and K2, because the language-inclusion
problem (K1, K2) is hard, in practice, it is important to find sufficient conditions
for LK1

⊆ LK2
that can be checked efficiently. One such sufficient condition is

bisimilarity.

Hierarchical Verification 6

State preorders

A state preorder � is a family of preorders, one preorder �K on the of each
observation structure K. The trace preorder �L is the following state preorder:
for two states s and t of an observation structure K, let s �L

K t iff LK(s) ⊆
LK(t).

A state preorder allows us to compare states. To compare two observation
structures with identical observations using a state preorder, we consider the
disjoint union of the two structures, and check if every initial state of one is
related to some initial state of the other. It also leads to a way of comparing
two reactive modules.

Structure and module preorders of a state preorder

Let � be a state preorder. Let K1 and K2 be two disjoint observation
structures. Let σI

1 be the initial region of K1, and let σI
2 be the initial

region of K2. Then, K1 � K2 if for all states s ∈ σI
1 , there is a state t ∈ σI

2

such that s �K1+K2
t.

For two modules P and Q, P � Q if (1) every interface variable of Q is
an interface variable of P , (2) every external variable of Q is an observable
variable of P , (3) for all variables x in obsXQ and y in intfXQ, if y ≺Q x

then y ≺P x, and (4) KP ′ � KQ for P ′ = hide (obsXP \obsXQ) in P .

Observe that the structure preorder relates two structures only when they have
identical observations, and hence, when comparing two modules we use hiding
before we compare the corresponding observation structures. For the bisimilar-
ity relation, K1 �B K2 means that every initial state of K1 is bisimilar to some
initial state of K2.

Remark 8.4 [Bisimulation preorder] Since bisimilarity is an equivalence rela-
tion over states, if K1 �B K2 and both structures have unique initial states,
then K2 �B K1. If the two modules P and Q have identical interface and
external variables, and unique initial states, then if P �B Q then Q �B P .

Exercise 8.5 {T1} [Checking bisimilarity preorder] Given two observation struc-
tures K1 and K2, what is the time complexity of checking K1 �B K2?

For the trace preorder, the induced preorder over observation structures is lan-
guage inclusion, and the induced preorder over modules is implementation.
Since bisimilar states have identical languages, proving bisimilarity preorder is
a sufficient condition for proving implementation. However, it is not a necessary
condition, because bisimilarity is more distinguishing than language equivalence.

Hierarchical Verification 7

Proposition 8.3 [Trace and bisimilarity preorders] For two observation struc-
tures K1 and K2, if K1 �B K2, then K1 �L K2. For two reactive modules P

and Q, if P �B Q then P �L Q.

Example 8.4 [Trace and bisimilarity preorders] In Example 8.1, we noted that
SyncMutex �L Pete. However, SyncMutex �B Pete does not hold.

In Example 8.2, we noted that Scheduler �L NonDetScheduler . Hopwever,
Scheduler �B NonDetScheduler does not hold.

In Example 8.3, we noted that Sync3BitCounter and Sync3BitCounterSpec are
trace-equivalent. Verify that the two modules are equivalent according to the
bisimilarity preorder also.

8.2 Compositional Reasoning

8.2.1 Compositionality

If we prove that a module P implements another module Q, can we substitute P

for Q in all contexts? Compositional proof rules admit such deductions, thereby
reducing reasoning about compound modules to reasoning about the component
modules.

Compositionality

The preorder � on reactive modules is compositional if for all modules P

and Q, if P � Q then

1. for every reactive module R that is compatible with P , R is compatible
with Q and P‖R � Q‖R;

2. for variable x of P , hide x in P � hide x in Q;

3. for every variable renaming ρ, P [ρ] � Q[ρ].

A compositional equivalence on modules is called a module congruence.

Remark 8.5 [Congruence] If � is a compositional preorder on modules, then
the symmetric closure of � is a module congruence.

Theorem 8.3 [Compositionality of implementation] The implementation pre-
order �L on modules is compositional.

Proof. Consider two reactive modules P and Q such that P �L Q. The cases
corresponding to the operations of hiding and renaming are straightforward.

Hierarchical Verification 8

We consider only parallel composition. Let R be a reactive module that is
compatible with P .

First, we need to establish that Q and R are compatible. Since intfXP ∩ intfXR

is empty, and intfXQ ⊆ intfXP , we conclude that intfXQ ∩ intfXR is empty.
Asymmetricity of (≺Q ∪ ≺R)+ follows from (1) (≺P ∪ ≺R)+ is asymmetric, and
(2) for two variables x, y ∈ obsXQ, if x ≺Q y then x, y ∈ obsXP with x ≺P y.

Next, we establish that every initialized trace of P ‖R is also an initialized trace
of Q ‖R. Let a be an initialized trace of P ‖R. From Proposition 8.1, obsXP [a]
is an initialized trace of P and obsXR[a] is an initialized trace of R. Since
P �L Q, obsXQ[a] is an initialized trace of Q. Again, from Proposition 8.1,
obsXQ ‖R[a] is an initialized trace of Q ‖R.

Corollary 8.1 [Congruence of trace equivalence] Trace equivalence is a module
congruence.

Suppose that we wish to prove that a compound module P1‖P2 implements the
abstraction Q1‖Q2, where Q1 is an abstraction of P1 and Q2 is an abstraction
of P2. By Theorem 8.3, it suffices to prove separately that (1) the component
module P1 implements Q1, and (2) the component module P2 implements Q2.
Both proof obligations (1) and (2) involve smaller state spaces than the original
proof obligation.

Example 8.5 [Compositional proof] Consider the synchronous message-passing
protocol

SyncMsg = hide ready , transmit ,msgS in SyncSender ‖Receiver

and the asynchronous message passing protocol

AsyncMsg = hide ready , transmit ,msgS in AsyncSender ‖Receiver .

Suppose we wish to establish that the synchronous protocol is an implementation
of the asynchronous one:

SyncMsg �L AsyncMsg .

Then, since �L is compositional, it suffices to establish that

SyncSender �L AsyncSender .

Verify that synchronous sender SyncSender indeed is an implementation of the
asynchronous sender AsyncSender .

Exercise 8.6 {T3} [Bisimilarity congruence] Prove that the bisimulation pre-
order �B is compositional.

It also follows that the state logic Sal is compositional:

Corollary 8.2 [Compositionality of Sal] If a reactive module P satisfies an
Sal formula φ, then every compound module P ‖Q also satisfies the Sal formula
φ.

Hierarchical Verification 9

8.2.2 Assume-guarantee Reasoning

Compositional proof rules, while useful, may not always be applicable. In partic-
ular, P1 may not implement Q1 for all environments, but only if the environment
behaves like P2, and vice versa. In this case, assumption-guarantee proof rules
are needed. An assume-guarantee proof rule asserts that in order to prove that
P1‖P2 implements Q1‖Q2, it suffices to prove (1) P1‖Q2 implements Q1, and
(2) Q1‖P2 implements Q2. Both proof obligations (1) and (2) typically involve
smaller state spaces than the original proof obligation, because the compound
module P1‖P2 usually has the largest state space involved. Observe the circular
nature of the assume-guarantee reasoning. Its correctness depends crucially on
the fact that a module does not constrain the behavior of its environment, and
thus, interacts with other modules in a non-blocking way.

Theorem 8.4 [Assume-guarantuee reasoning] Let P1 and P2 be two compatible
reactive modules, and let Q1 and Q2 be two compatible reactive modules. If
P1‖Q2 �L Q1, Q1‖P2 �L Q2, and every external variable of Q1‖Q2 is an
observable variable of P1‖P2, then P1‖P2 �L Q1‖Q2.

Proof. Consider four modules P1, P2, Q1, and Q2 such that

1. P1 and P2 are compatible,

2. Q1 and Q2 are compatible,

3. every external variable of Q1‖Q2 is an observable variable of P1‖P2,

4. P1‖Q2 �L Q1, and

5. Q1‖P2 �L Q2.

We wish to establish that P1‖P2 �L Q1‖Q2. The definition of implementation
has four requirements. Let us consider these four goals one by one.

Goal 1: To show that every interface variable of Q1‖Q2 is an interface variable
of P1‖P2, let x be an interface variable of Q1‖Q2. Due to symmetry, it suffices
to consider the case that x is an interface variable of Q1. By assumption (4), x

is an interface variable of P1‖Q2. The assumption (2) implies that x is not an
interface variable of Q2. It follows, from the definition of parallel composition,
that x is an interface variable of P1, and hence, of P1‖P2.

Goal 2: The second requirement that every external variable of Q1‖Q2 is an
observable variable of P1‖P2 is assumption (3).

Goal 3: We wish to show that if y ≺Q1‖Q2
x then y ≺P1‖P2

x. Since ≺Q1‖Q2
is

the transitive closure of the union ≺Q1
and ≺Q2

, and by symmetry, it suffices
to prove that if y ≺Q1

x then y ≺P1‖P2
x.

Hierarchical Verification 10

Consider an interface variable y and an observable variable of x of Q1 such that
y ≺Q1

x. From assumption (4), we have y ≺P1‖Q2
x. We know that ≺P1‖Q2

is
the transitive closure of the union of ≺P1

and ≺Q2
. Hence, whenever y ≺Q1

x,
there is a finite chain of awaits dependencies such that

y ≺P1
y1 ≺Q2

y2 ≺P1
· · · x (†)

Similarly, if y ≺Q2
x, then there exists a chain of awaits dependencies

y ≺P2
y1 ≺Q1

y2 ≺P2
· · · x (‡)

By repeatedly applying (†) and (‡), since the awaits relations are acyclic, and
the number of variables is finite, if y ≺Q1

x, then there exists a finite chain of
awaits dependencies

y ≺P1
y1 ≺P2

y2 ≺P1
· · · x

and thus, y ≺P1‖P2
x.

Goal 4: We wish to establish that every trace of P1‖P2 is also a trace of Q1‖Q2.
We start by defining some additional concepts. For simplicity, in the following
we omit explicit projections. For instance, if X is a superset of obsXP , and
s is sequence of valuations for X such that s[obsXP] is a trace of P , then we
consider s also to be a trace of P .

Given a module P , a subset X ⊆ obsXP of the observable variables is awaits-
closed if, whenever y ≺P x and y ∈ X , then x ∈ X . For an awaits-closed set X ,
the pair (s0...m, t) consisting of a trace s0...m ∈ LP of P and a valuation t for X

is said to be a X-partial-trace of P if there exists an observation sm+1 such that
(1) sm+1[X] = t, and (2) s0...(m+1) ∈ LP . Thus, partial-traces are obtained by
executing only some of the subrounds of the last update round. The following
facts about partial-traces follow from the definition of reactive modules.

1. If P �L Q and X is awaits-closed for P , then X is awaits-closed for Q. If
P �L Q, and (s, t) is a X-partial-trace of P , then (s, t) is a X-partial-trace
of Q. Thus, inclusion of traces is equivalent to inclusion of partial traces.

2. The partial-traces of a compound module are determined from the partial-
traces of the components: (s, t) is a X-partial-trace of P‖Q iff it is a
X-partial-trace of both P and Q.

3. If (s, t) is a X-partial-trace of P , and u is a valuation for a subset Y of
the external variables of P , then (s, t∪ u) is a (X ∪ Y)-partial-trace of P .
This property is due the nonblocking nature of reactive modules.

Let X1, . . .Xk be a partitioning of obsXP1‖P2
into disjoint subsets such that

(1) each Xi either contains only external variables of P1‖P2 or contains only
interface variables of P1 or only interface variables of P2, and (2) x ≺P1‖P2

y

Hierarchical Verification 11

and x ∈ Xi then y ∈ Xj for some j < i. Let Y0 = ∅, and for 0 ≤ i < k,
Yi+1 = Yi ∪Xi. Each such set Yi is awaits-closed. Let L be the set of pairs (s, t)
such that (s, t) is a X-partial-trace of P1‖P2 for X = Yj for some 0 ≤ j ≤ k.
Define an ordering < over L: if (s, t) is a Yj-partial-trace with j < k, and
(s, u) is a Yj+1-partial-trace with u[Yj] = t then (s, t) < (s, u); and (s, t) is a
Yk-partial-trace then (s, t) < (s · t, ∅). Clearly, the ordering < is well founded.
By well-founded induction with respect to <, we prove that every partial-trace
in L is a partial-trace of Q1‖Q2.

Consider (s, ∅) in L. If s is the empty trace, then (ε, ∅) is a partial-trace of all
modules. Otherwise, s is nonempty: s = t · u. Then (t, u) is a Yk-partial-trace
of P1‖P2. Since (t, u) < (s, ∅), by induction hypothesis, (t, u) is a partial-trace
of Q1‖Q2, and hence, so is (s, ∅).

Consider (s, t) in L such that t is a valuation for Yj+1 for some 0 ≤ j < k. Let
u = t[Yj]. Then, (s, u) < (s, t). By induction hypothesis, (s, u) is a Yj-partial-
trace of Q1‖Q2. By the property (2) of partial-traces, (s, u) is a Yj-partial-trace
of both Q1 and Q2. Consider Yj+1 = Yj ∪ Xj . We know that Xj contains
interface variables of at most one of P1 and P2. Without loss of generality, let
us assume that Xj contains no interface variables of P2, and hence, no interface
variables of Q2. By property (3) of partial-traces, the Yj-partial-trace (s, u)
of Q2 can be extended with any valuation for Xj . In particular, (s, t) is a
Yj+1-partial-trace of Q2. Hence, (s, t) is a Yj+1-partial-trace of P1‖Q2. Since
P1‖Q2 �L Q1, and by property (1) of partial-traces, (s, t) is a partial-trace of
Q1. Again, by property (2) of partial-traces, (s, t) is a partial-trace of Q1‖Q2.

Example 8.6 [Assume guarantee reasoning] To illustrate the application of as-
sume guarantee reasoning, we consider a simple version of the alternating-bit
protocol. The sender process is the module ABPSender of Figure 8.2. The
private variable x indicates the bit to be sent with the next message. The mes-
sage is transmitted by issuing the interface event transmitS , and updating the
variables abp and msg to the message contents. The acknowledgements issued
by the receiver are stored in the private buffer z. After sending the message, the
process removes an acknowledgement from z. If the acknowledgement equals
the current value of the alternating-bit x, the sender concludes a correct delivery
of the message, and updates the alternating-bit x.

The receiver process ABPReceiver is symmetric, and is shown in Figure 8.3
The messages received from the sender are stored in the private buffer z (for
simplicity, the message is ignored, and the alternating-bit is stored). The process
removes the first message in z in the variable x, which is, then, issued at a later
time along with the interface event transmitR.

Consider the module ABP = ABPSender ‖ABPReceiver . The observable be-
havior of ABP is very regular: first the sender issues transmitS with the bit 0,

Hierarchical Verification 12

module ABPSender is

interface transmitS :
�
; abp : � ; msg : �

external transmitR :
�
; ack : �

private consume :
�
; pc : {send ,wait}; x : � ; z : queue of �

passive atom

controls z

reads consume, transmitR

awaits consume, transmitR, ack
init

[] true → z′ := EmptyQueue
update

[] consume? ∧ transmitR? → z′ := Enqueue(ack ′,Dequeue(z))
[] consume? ∧ ¬transmitR? → z′ := Dequeue(z)
[] ¬consume? ∧ transmitR? → z′ := Enqueue(ack ′, z)

lazy atom

controls consume, x

reads pc, z, x, consume
init

[] true → x′ := 0
update

[] pc = wait ∧ z 6= EmptyQueue ∧ x = Front(z) → consume!
[] pc = wait ∧ z 6= EmptyQueue ∧ x 6= Front(z) → consume!; x′ := ¬x

passive atom

controls pc
reads pc, consume, transmitS

awaits consume, transmitS

init

[] true → pc′ := send
update

[] pc = send ∧ transmitS? → pc′ := wait
[] pc = wait ∧ consume? → pc ′ := send

lazy atom

controls transmitS ,msg , abp
reads pc, transmitS , x

update

[] pc = send → transmitS !; abp ′ := x; msg ′ := �

Figure 8.2: Sender process of Alternating-bit Protocol

Hierarchical Verification 13

then the receiver issues transmitR with the acknowledgement 0, then the sender
issues transmitS with the bit 1, then the receiver issues transmitR with the
acknowledgement 1.

Figure 8.4 shows simpler abstract versions of the sender and receiver. The
module AbstractSender differs from the module ABPSender in two ways. It
assumes that (1) it will always recieve the correct acknowledgements, and (2)
the acknowledgement events issued by the receiver strictly alternate with the
events issued by the sender. Consequently, it does not read the values of the
acknowledgements, and it does not buffer the acknowledgements. The process
AbstractReceiver is a similar simplification of ABPReceiver .

Suppose we wish to establish that

ABPSender ‖ABPReceiver �L AbstractSender ‖AbstractReceiver . (†)

Compositionality cannot simplify this goal, becuase neither ABPSender im-
plement AbstractSender , nor does ABPReceiver implement AbstractReceiver .
However, verify that both

ABPSender ‖AbstractReceiver �L AbstractSender ,

and

AbstractSender ‖ABPReceiver �L AbstractReceiver

hold. Then, by assume-guarantee theorem we can conclude the obligation (†).

Exercise 8.7 {T2} [Side condition in assume-guarantee rule] Show that the
assumption that every external variable of Q1‖Q2 is an observable variable of
P1‖P2 is essential (i.e. it does not follow from the assumptions (1), (2), (4), and
(5) in the proof of the assume-guarantee theorem.

Exercise 8.8 {T3} [Assume-guarantee for bisimilarity] Does Theorem 8.4 hold
for the bisimulation preorder �B?

8.3 Simulation Relations

Establishing trace preorder between two observation structures is computation-
ally hard. While bisimilarity of two structures is a sufficient condition to es-
tablish trace preorder, bisimilarity over structures in an equivalence relation,
and does not admit the implementation to have less traces than the specifica-
tion. Simulation relations offer a practical alternative: on one hand, computing
simulation relations is computationally easier than establishing trace preorder,

Hierarchical Verification 14

module ABPReceiver is

external transmitS :
�
; abp : � ; msg : �

interface transmitR :
�
; ack : �

private consume :
�
; pc : {send ,wait}; x : � ; z : queue of �

passive atom

controls z

reads consume, transmitS

awaits consume, transmitS , abp
init

[] true → z′ := EmptyQueue
update

[] consume? ∧ transmitS? → z′ := Enqueue(abp ′,Dequeue(z))
[] consume? ∧ ¬transmitS? → z′ := Dequeue(z)
[] ¬consume? ∧ transmitS? → z′ := Enqueue(abp ′, z)

lazy atom

controls consume, x

reads pc, z

update

[] pc = wait ∧ z 6= EmptyQueue → consume!; x′ := Front(z)
passive atom

controls pc
reads pc, consume, transmitR

awaits consume, transmitR

init

[] true → pc′ := wait
update

[] pc = send ∧ transmitR? → pc′ := wait
[] pc = wait ∧ consume? → pc ′ := send

lazy atom

controls transmitR, ack
reads pc, transmitR, x

update

[] pc = send → transmitR!; ack ′ := x

Figure 8.3: Receiver process of Alternating-bit Protocol

Hierarchical Verification 15

module AbstractSender is

interface transmitS :
�
; abp : �

external transmitR :
�

private pc : {send ,wait}; x : �
passive atom

controls pc
reads pc, transmitS , transmitR

awaits transmitR, transmitS

init

[] true → pc′ := send
update

[] pc = send ∧ transmitS? → pc′ := wait
[] pc = wait ∧ transmitR? → pc′ := send

lazy atom

controls x, transmitS , abp
reads pc, x, transmitS

init

[] true → x′ := 0
update

[] pc = send → transmitS !; abp ′ := x; x′ := ¬x

module AbstractReceiver is

external transmitS :
�

interface transmitR :
�
; ack : �

private pc : {send ,wait}; x : �
passive atom

controls pc
reads pc, transmitS , transmitR

awaits transmitR, transmitS

init

[] true → pc′ := wait
update

[] pc = send ∧ transmitR? → pc′ := wait
[] pc = wait ∧ transmitS? → pc′ := send

lazy atom

controls x, transmitR, ack
reads pc, x, transmitR

init

[] true → x′ := 0
update

[] pc = send → transmitR!; ack ′ := x; x′ := ¬x

Figure 8.4: Abstract Sender and Receiver of Alternating-bit Protocol

Hierarchical Verification 16

while on the other hand, existence of simulation relations is much less stringent
requirement compared to bisimilarity.

Simulation

Let K = (Σ, σI ,→, A, 〈〈·〉〉) be an observation structure. A simulation � of
K is a binary relation on the state space such that for all states s and t

of K, if s � t then (1) 〈〈s〉〉 = 〈〈t〉〉 and (2) if s → s′, then there is a state
t′ such that t → t′ and s′ � t′. The state t simulates the state s, denoted
s �S

K t, if there is a simulation � such that s � t.

From the definition of simulation relations, it follows that the union of two
simulation relations is also a simulation relation.

Proposition 8.4 [Union-closure of simulation relations] Let K be an observa-
tion structure with state-space Σ. For two simulation relations �1 and �2, their
union �1 ∪ �2 is a simulation relation.

It follows that the set of simulation relations forms a complete partial-order
with respect to the subset relation.

Corollary 8.3 [Maximal simulation] For an observation structure K, the rela-
tion �S

K is a simulation of K, and equals the union of all simulation relations
of K.

The maximal simulation relation �S
K is reflexive and transitive, and thus, a state

preorder. This follows from the fact that reflexive-transitive closure a simulation
is also a simulation.

Proposition 8.5 [Simulation preorder] For an observation structure K, if �
is a simulation of K, then so is its reflexive-stransitive closure �∗.

Exercise 8.9 {T2} [Simulation preorder] Prove Proposition 8.5.

Recall the alternative definitions of bisimilarity from Chapter 6. Similarity
relation can be also be explained in various ways. Let us consider the similarity
game on the graph of the observation structure K. Player I, the protagonist,
attempts to show that the state t simulates the state s, while Player II, the
adversary, tries to establish otherwise. If the two given states have different
observations, then the adversary wins immediately. Throughout the game, each
player has an active state. Initially, the active state of the adversary is s, and
the active state of the protagonist is t. In each move of the game, the adversary
replaces its active state by one of its successors, say s′; the protagonist, then,
must replace its own active state with one of its successors t′ such that s′ and t′

have identical observations. If the protagonist cannot find such a replacement,

Hierarchical Verification 17

then the adversary wins the game. The state t simulates the state s iff the
adversary does not have a winning strategy; that is, all of possible moves of the
adversary can perpetually be matched by the protagonist. Contrast this game
with the bisimilarity game: the bisimilarity game has two active states at each
step, the adversary chooses one of the two active states, and replaces it by one
of its successors, and the protagonist is required to find a replacement for the
other active state. Thus, similarity game is like bisimilarity game in which, the
adversary starts playing from s and never switches sides.

Example 8.7 [Simulation game] Let us revisit the bisimilarity game of Exam-
ple 6.9 (See Figure 6.7). States s0 and u0 are bisimilar, and hence, similar.
States s0 and t0 are not bisimilar. Now let us consider the similarity game.
Suppose initially the active state of the adversary is s0, while the active state of
the protagonist is t0. Verify that the adversary has a winning strategy in this
case. Consequently, the state t0 does not simulate the state s0, and s0 6�S t0.
On the other hand, suppose initially the active state of the adversary is t0 and
the active state of the protagonist is s0. In this case, the protagonist can match
every move of the adversary. In fact, {(t0, s0), (t1, s1), (t2, s1), (t3, s2), (t4, s3)}
is a simulation relation. Consequently, the state s0 does simulate the state t0,
and t0 �S s0.

Remark 8.6 [Simulation vs. bisimulation] Recall that an equivalence relation
∼= on the states of an observation structure K is a bisimulation iff whenever
s ∼= t, (1) 〈〈s〉〉 = 〈〈t〉〉, and (2) if s → s′, then there is a state t′ such that t → t′

and s′ ∼= t′. It follows that the bisimulations of K are precisely the symmetric
simulations of K; that is, the equivalence ∼= on the states of K is a bisimulation
iff both ∼= and ∼=−1 are simulations of K.

To prove that the language of a state s is included in the language of a state t,
it suffices to prove that t simulates s.

Theorem 8.5 [Simulation vs. language inclusion] Let s and t be two states of
an observation structure K. If s �S

K t, then s �L
K t.

Proof. Consider two states s and t of K such that s �S
K t. Consider a

source-s trajectory s0...m. Let t0 = t. For i = 1, . . .m, by induction on i,
since si−1 �S

K ti−1 and si−1 → si, there exists a state ti such that si �S
K ti

and ti−1 → ti. Thus, t0...m is a source-t trajectory of K. Furthermore, for all
0 ≤ i ≤ m, 〈〈si〉〉 = 〈〈ti〉〉, and hence, 〈〈s0...m〉〉 is also a source-t trace of K.

The simulation preorder allows comparing two observations structures: for two
observation structures K1 and K2 with disjoint state-spaces and identical ob-
servations, K1 �S K2 if for every initial state s of K1, there exists an initial
state t of K2 such that s �S

K1+K2
t.

Hierarchical Verification 18

Corollary 8.4 [Simulation preorder vs. trace preorder] For two observation
structures K1 and K2, if K1 �S K2, then K1 �L K2.

Remark 8.7 [Simulation of reachable states] If K1 �S K2 then for every reach-
able state s of K1, there exists a reachable state t of K2 such that t simulates
s.

It follows that the language-inclusion problem (K1, K2) can be solved by ex-
hibiting a simulation � of K1 +K2 such that for every initial state s of K1 there
is an initial state t of K2 with s � t.

8.3.1 Similarity

Similarity

The state equivalence 'S induced by the simulation preorder �S is called
similarity.

Thus, s 'S t for two states s and t of the observation structure K if there
exists a simulation �1 of K with s �1 t and a simulation �2 of K with t �2 s.
To observe that the similarity is more distinguishing than trace equivalence,
consider states s and t of Figure 6.8 We have s 'L t, but t does not simulate s.

Example 8.8 [Similarity vs. bisimilarity] To observe that the bisimilarity is
more distinguishing than similarity, consider states s0 and t0 of Figure 8.5. The
two states are not bisimilar. Observe that the relation

{(s0, t0), (s1, t2), (s2, t4), (s3, t5)}

is a simulation relation, and hence, t0 simulates s0. The relation

{(t0, s0), (t1, s1), (t2, s1), (t3, s2), (t4, s2), (t5, s3)}

is also a simulation relation, and hence, s0 simulates t0. Thus, the two states
s0 and t0 are similar.

The relationship among various state equivalences is summarized in Theorem 8.6.

Theorem 8.6 [Distinguishing power of state equivalences] ≈ � 'L � 'S

� 'B � =.

Exercise 8.10 {T4} [i-step similarity] (1) Define i-step trace equivalence and
i-step similarity. Show that i-step similarity lies strictly between i-step trace
equivalence and i-step bisimilarity on one hand, and between (i − 1)-step simi-
larity and (i + 1)-step similarity on the other hand. (2) Give a fixpoint charac-
terization of similarity.

Hierarchical Verification 19

s2

q

s1

p
t1
p

t0
p

t4
q

t5
p

s3

p
t3
q

t2
p

s0

p

Figure 8.5: Comparing similarity and bisimilarity

Exercise 8.11 {T3} [Backward simulation] Let K = (Σ, σI ,→, A, 〈〈·〉〉) be an
observation structure. A backward simulation � of K is a binary relation on
the state space such that for all states s and t of K, if s � t then (1) 〈〈s〉〉 = 〈〈t〉〉
and (2) if s′ → s, then there is a state t′ such that t′ → t and s′ � t′. The state
t backward simulates the state s if there is a backward simulation � such that
s � t.

Prove that the language-inclusion problem (K1, K2) has the answer Yes if
there is a backward simulation � of K1 + K2 such that (1) for every state s of
K1 there is a state t of K2 with s � t, and (2) if s is initial and s � t, then t is
initial.

Prove that similarity and backward similarity are incomparable state equiv-
alences.

Exercise 8.12 {T4} [Forward-backward simulation] (1) Prove that simulations
and backward simulations are closed under relational composition, and show
that the composition of a simulation with a backward simulation may be neither
a simulation nor a backward simulation. (2) The composition of a simulation
with a backward simulation is called a forward-backward simulation, and the
composition of a backward simulation with a simulation is a backward-forward
simulation. In this manner, we can define an infinite family of state equivalences.
Prove that all members of this family lie strictly between trace equivalence and
bisimilarity in distinguishing power.

8.3.2 Universal and existential Stl

Universal and existential Stl are the fragments of Stl whose formulas do not
contain quantifier switches. Since quantifier switches correspond to switching

Hierarchical Verification 20

sides in the bisimilarity game, universal and existential Stl cannot distinguish
between similar states.

Let us recall the definition of universal Stl (∀Stl) from Chapter 6. The for-
mulas of ∀Stl are generated by the grammar

φ ::= p | φ ∨ φ | φ ∧ φ | ∀© φ | φ∀Wφ.

Proposition 6.6 states that Stl cannot distinguish between bisimilar states.
Now, we establish that ∀Stl cannot distinguish between similar states.

Proposition 8.6 [Simulation and Universal Stl] Let s and t be two states of
an observation structure K, and let φ be a formula of ∀Stl. Then, if s �S

K t

and t |= φ then s |= φ.

Exercise 8.13 {T2} [Simulation and Universal Stl] Prove Proposition 8.6.

Corollary 8.5 [Similarity and Universal Stl] Similarity is an abstract seman-
tics for ∀Stl.

It follows that it suffices to construct quotients with respect to similarity for
model checking of ∀Stl requirements. Since similarity is a coarser equivalence
than bisimilarity, the quotient with respect to similarity can be smaller than
the quotient with respect to bisimilarity.

Recall that bisimilarity is a fully abstract semantics for STL: the equivalence
induced by Stl coincides with bisimilarity. A similar result holds for ∀Stl and
similarity: two states of an observation structure K that are not similar can be
distinguished by an ∀Stl-formula.

Proposition 8.7 [∀Stl full abstraction] Similarity is a fully abstract semantics
for ∀Stl.

Exercise 8.14 {T3} [Distinguishing non-similar states with ∀Stl] Show that
two non-similar states of a finitary observation structure can be distinguished
by an ∀Stl-formula that uses only the next-time operator ∀©. Proposition 8.7
follows.

Exercise 8.15 {T3} [Existential Stl] The formulas of existential Stl (∃Stl)
are generated by the grammar

φ ::= p | φ ∨ φ | φ ∧ φ | ∃© φ | φ∃Uφ.

(1) Let s and t be two states of an observation structure K, and let φ be a
formula of ∃Stl. Prove that if s �S

K t and s |= φ then t |= φ. It follows that
two similar states satisfy the same ∃Stl formulas, and similarity is an abstract
semantics for ∃Stl. (2) Let s and t be two non-similar states of an observation
structure K. Prove that there exists an ∃Stl-formula that is satisfied by only
one of the two states. It follows that the equivalence induced by ∃Stl coincides
with similarity.

Hierarchical Verification 21

State Equivalence Complexity Logic
Trace equivalence 'L O(m · 2n)/Pspace Sal

Similarity 'S O(m · n) ∀Stl, ∃Stl

Bisimilarity 'B O(m · log n) Stl

Figure 8.6: Summary of state equivalences

8.4 Computing Similarity

We proceed to study algorithms for deciding whether one structure simulates
another. As in case of partition refinement, both enumerative and symbolic
algorithms are considered. The complexity of deciding the similarity relation
on a finite observation structure is quadratic (O(m · n)). Contrast this with
O(m · log n) complexity of deciding the bisimilarity relation, which is finer than
similarity, and Pspace complexity of deciding language equivalence, which is
coarser than similarity.

The results concerning the three state equivalences, trace equivalence, similarity,
and bisimilarity, are summarized in Figure 8.6. The second column shows com-
plexity of deciding equivalence of two states in a structure with n states and m

transitions, while the third column list the logic(s) for which the corresponding
equivalence is fully abstract.

Let K be an observation structure, and let s be a state of K. Then, the simulator
set sim(s) of s is the set of states that simulate s.

An instance of the similarity-checking problem consists of a finite observa-
tion structure K. The answer to the similarity-checking problem is the set
of simulator sets sim(s), for each state s of K.

Remark 8.8 [Simulator sets] Let K be an observation structure. Similar states
have identical simulator sets: for two states s and t of K, if s 'S t then
sim(s) = sim(t). The simulator set of every state is a block of the partition 'S:
for every state s, sim(s) is a union of equivalence classes of 'S .

Once the similarity-checking problem K is solved, then s 'S t iff s ∈ sim(t) and
t ∈ sim(s). Similarity-checking problem can be used to decide if one observation
structure simulates another.

8.4.1 Enumerative Similarity Checking

We develop our enumerative algorithm in three steps.

Hierarchical Verification 22

Algorithm 8.1 [Schematic Similarity]

Input: a finite observation structure K = (Σ, σI ,→, A, 〈〈·〉〉).
Output: for each state s ∈ Σ, the simulator set sim(s).

foreach s ∈ Σ do sim(s) := {t ∈ Σ | 〈〈t〉〉 = 〈〈s〉〉} od;
while there are three states t, s, and u such that

s ∈ post(t), u ∈ sim(t), and post(u) ∩ sim(s) = ∅ do

sim(t) := Delete(u, sim(t))
{I0: assert for all s, t ∈ Σ, if t simulates s then t ∈ sim(s)}
od.

Figure 8.7: Enumerative similarity checking

Schematic similarity

We start with the schematic algorithm shown in Figure 8.7. For each state s,
the set sim(s) contains states that are candidates for simulating s. Initially,
sim(s) contains all states with the observation of s. If t → s and u ∈ sim(t),
but there is no v ∈ sim(s) such that u → v, then u cannot simulate t and is
removed from sim(t), without violating the invariant assertion I0. In this case,
we say that sim(t) is sharpened with respect to the transition (t, s). It is easy
to check that if no transitions allow a sharpening of sim(t) for any state t, then
for all s, all states in sim(s) can simulate s.

Theorem 8.7 [Schematic similarity] Given a finite observation structure K,
Algorithm 8.1 correctly solves the similarity-checking problem.

If the input structure has n states, there can be at most n2 iterations of the while
loop. A naive implementation of the schematic algorithm therefore requires
time O(m2n3), where m ≥ n is the number of transitions of the input structure.
We will improve the running time to O(mn).

Refined similarity

The algorithm of Figure 8.8 refines the schema of Algorithm 8.1. The key idea
of the refinement is the introduction of a set prevsim(s) for each state s. For
each state s, the set prevsim(s) is a superset of sim(s) and contains states that
once were considered candidates for simulating s. The crucial invariant I2 of
the while loop allows us to sharpen sim(t) with respect to the transition (t, s)
by looking only at states in prevsim(s) when checking if a state u ∈ sim(t) has
a successor in sim(s). Moreover, once v ∈ prevsim(s)\sim(s) is examined once,
v is removed from prevsim(s) forever.

Hierarchical Verification 23

Algorithm 8.2 [Refined Similarity]

Input: a finite observation structure K = (Σ, σI ,→, A, 〈〈·〉〉).
Output: for each state s ∈ Σ, the simulator set sim(s).

foreach s ∈ Σ do

prevsim(s) := Σ;
if post(s) = ∅

then sim(s) := {t ∈ Σ | 〈〈t〉〉 = 〈〈s〉〉}
else sim(s) := {t ∈ Σ | 〈〈t〉〉 = 〈〈s〉〉 and post(t) 6= ∅}
fi

od;
while there is a state s ∈ Σ such that sim(s) 6= prevsim(s) do

{I1: assert for all s ∈ Σ, sim(s) ⊆ prevsim(s)}
{I2: assert for all t, s, u ∈ Σ, if t → s and u ∈ sim(t),

then post(u) ∩ prevsim(s) 6= ∅}
remove := pre(prevsim(s))\pre(sim(s));
foreach t ∈ pre(s) do sim(t) := sim(t)\remove od;
prevsim(s) := sim(s)
od.

Figure 8.8: Refined similarity checking

Hierarchical Verification 24

The initial for loop of Algorithm 8.2 performs, in addition to the work of the
initial for loop of Algorithm 8.1, also some of the work of the while loop of
Algorithm 8.1. For each state s, the set prevsim(s) is initialized to contain all
states, and sim(s) is initialized to contain all states with the same observation
as that of s, and that have a successor if s does. This initialization establishes
the two invariants I1 and I2. In each iteration of the while loop, we nonde-
terministically pick a state s for which sim(s) improves on prevsim(s), and we
sharpen sim(t) for all predecessors t of s with respect to the transition (t, s).
By I2, all states in sim(t) have successors in prevsim(s), and we can find all
states in sim(t) that do not have successors in sim(s) by looking at the prede-
cessor set of prevsim(s). These states are collected in the set remove and deleted
from sim(t). Once all predecessors of s have been processed in this fashion, we
update prevsim(s) to sim(s). If sim(s) = prevsim(s) for all states s, then I2
implies the termination condition of the while loop of Algorithm 8.1.

Quadratic similarity checking

The algorithm of Figure 8.9 implements the scheme of Algorithm 8.2 using two
data structures. First, instead of recomputing the set remove in each itera-
tion of the while loop, the algorithm dynamically maintains for each state s a
set remove(s) that satisfies the invariant I3. If remove(s) = ∅ for all states s,
then I1 and I3 imply the termination condition of the while loop of Algo-
rithm 8.2. Second (not shown in the figure), we maintain a two-dimensional
array count [1..n, 1..n] of nonnegative integers such that count [v, t] = |post(v) ∩
sim(t)| for all states v and t. The array count is initialized in time O(mn).
Whenever a state u is removed from sim(t), then the counters count [v, t] are
decremented for all predecessors v of u. The cost of these decrements is ab-
sorbed in the cost of the innermost if statement. With the array count , the test
post(v) ∩ sim(t) = ∅ of that if statement can be executed in constant time, by
checking if count [v, t] = 0.

The initialization of sim(s) for all s requires time O(n · (m + n)). The initial-
ization of remove(s) for all s requires time O(mn). Given two states s and u,
if the test u ∈ remove(s) is positive in iteration i of the while loop, then the
test u ∈ remove(s) is negative in all iterations j > i. This is because (1) in
all iterations, u ∈ remove(s) implies that u 6∈ pre(sim(s)), (2) the value of
prevsim(s) in all iterations j > i is a subset of the value of sim(s) in itera-
tion i, and (3) invariant I1. It follows that the test u ∈ sim(t) is executed
ΣsΣu|pre(s)| = O(mn) times. The test u ∈ sim(t) is positive at most once
for every u and t, because after a positive test u is removed from sim(t) and
never put back. Therefore the body of the outer if statement in the while loop
contributes time ΣuΣt(1 + |pre(u)|) = O(mn). This gives a total running time
of O(mn).

Hierarchical Verification 25

Algorithm 8.3 [Quadratic Similarity]

Input: a finite observation structure K = (Σ, σI ,→, A, 〈〈·〉〉).
Output: for each state s ∈ Σ, the simulator set sim(s).

foreach s ∈ Σ do

{let prevsim(s) := Σ}
if post(s) = ∅

then sim(s) := {t ∈ Σ | 〈〈t〉〉 = 〈〈s〉〉}
else sim(s) := {t ∈ Σ | 〈〈t〉〉 = 〈〈s〉〉 and post(t) 6= ∅}
fi;

remove(s) := pre(Σ)\pre(sim(s))
od;

while there is a state s ∈ Σ such that remove(s) 6= ∅ do

{I3: assert for all s ∈ Σ, remove(s) = pre(prevsim(s))\pre(sim(s))}
foreach t ∈ pre(s) do

foreach u ∈ remove(s) do

if u ∈ sim(t) then

sim(t) := Delete(u, Sim(t));
foreach v ∈ pre(u) do

if post(v) ∩ sim(t) = ∅ then remove(t) := Insert(v, remove(t)) fi

od

fi

od

od;
{let prevsim(s) := sim(s)}

remove(s) := ∅
od.

Figure 8.9: Efficient similarity checking

Hierarchical Verification 26

Theorem 8.8 [Enumerative similarity checking] Given a finite observation struc-
ture with n states and m transitions, Algorithm 8.3 solves the similarity checking
problem in time O(mn).

Corollary 8.6 [Checking similarity of states] The similarity of two states of a
finite observation structure can be decided in time O(mn).

8.4.2 Symbolic Similarity Checking

Symbolic procedures operate on regions, rather than states. Instead of com-
puting simulator sets for individual states, we compute simulator sets for entire
regions. Recall that if two states are similar, then their simulator sets are iden-
tical, and the simulator set of every state is a block of the similarity relation 'S.
This suggests that we should compute simulator sets of equivalence classes of
'S , rather than simulator sets of individual states. These two facts lead us to
the following definition.

Symbolic simulator sets

Given an observation structure K, and a K-partition ∼=, the simulator func-
tion for ∼= is the function Sim that maps each region σ in ∼= to the union⋃

s∈σ sim(s). The symbolic simulator structure for K is the pair ('S ,Sim)
consisting of the similarity partition 'S and the simulator function Sim for
'S .

Constructing the symbolic simulator structure suffices to answer the similarity
checking problem: if ('S ,Sim) is the symbolic simulator structure for K, then
for a state s of K, sim(s) = Sim(σ) where σ is the equivalence class of 'S that
contains s.

For an observation a, let Σa = {s ∈ Σ | 〈〈s〉〉 = a} be the region of states with the
observation a. Thus, the collection {Σa | a ∈ A} defines the partition induced
by the propositional equivalence ≈. We develop our procedure in two steps.

Revised schematic similarity

We start with the schema shown in Figure 8.10, which relaxes the schema of
Algorithm 8.1. The initial for loops are identical, and establish the two invari-
ants I4 and I5. The invariant I5 asserts that whenever a simulator set sim(s)
contains a state u′, and u′′ simulates u′, then sim(s) contains also u′′. Assum-
ing I5, if u ∈ sim(t), u′ ∈ sim(s), and t → u′, but there is no u′′ ∈ sim(s)
such that u → u′′, then u cannot simulate t. This is because in order for u to
simulate t, some successor of u would have to simulate u′, which is not possible,
because by I5 all states that simulate u′ are contained in sim(s). We can there-
fore remove u from sim(t), maintaining both invariants, even if Algorithm 8.1

Hierarchical Verification 27

Algorithm 8.4 [Revised Schematic Similarity]

Input: an observation structure K = (Σ, σI ,→, A, 〈〈·〉〉).
Output: for each state s ∈ Σ, the simulator set sim(s).

foreach s ∈ Σ do sim(s) := {t ∈ Σ | 〈〈t〉〉 = 〈〈s〉〉} od;
while there are three states s, t, and u such that

post(t)∩ sim(s) 6= ∅, u ∈ sim(t), and post(u)∩ sim(s) = ∅ do

{I4: assert for all s ∈ Σ, s ∈ sim(s)}
{I5: assert for all s, t, u ∈ Σ, if t �S u and t ∈ sim(s), then u ∈ sim(s)}
sim(t) := Delete(u, sim(t))
od.

Figure 8.10: Revised scheme for similarity checking

would not have allowed us to do so. In this case, we say that sim(t) is freely
sharpened with respect to the transition (t, u′). If the transition (t, s) allows a
sharpening of sim(t), then I4 implies that (t, s) also allows a free sharpening
of sim(t). Consequently, if no transitions allow a free sharpening of sim(t) for
any state t, then the termination condition of Algorithm 8.1 is satisfied. This
implies the partial correctness of the revised scheme.

Theorem 8.9 [Revised schematic similarity] Given a finite observation struc-
ture K, Algorithm 8.4 correctly solves the similarity-checking problem.

Symbolic algorithm

The symbolic procedure, shown in Figure 8.11, is an instance of the schema
of Algorithm 8.4. The symbolic algorithm uses a symbolic representation of
regions. The only primitive operations it needs are boolean operations and the
pre-operation on regions, and emptiness checking of regions. Thus, it is not
restricted to finite observation structures, but rather to those structures that
support an effective symbolic representation of regions. If the similarity relation
'S of the input structure is finite, then it has only finitely many blocks, and
the invariant I7 ensures that Algorithm 8.5 terminates. If 'S is infinite, then
the partition ∼= needs to be refined infinitely often, and the procedure does not
terminate.

In implementing Algorithm 8.5, we can enforce the invariant that for all regions
σ ∈∼=, the region Sim(σ) is a block of ∼=, by refining the partition ∼= whenever
this becomes necessary due to the creation of a new simulator set. Such an
implementation maintains a finite partition ∼= of the state space Σ together

Hierarchical Verification 28

Algorithm 8.5 [Symbolic Similarity]

Input: an observation structure K = (Σ, σI ,→, A, 〈〈·〉〉).
Output: the symbolic simulator structure ('S ,Sim) of K.

∼= := {Σa | a ∈ A and Σa 6= ∅};
foreach σ ∈∼= do Sim(σ) := σ od;
while there are two regions σ, τ ∈∼= such that σ ∩ pre(Sim(τ)) 6= ∅

and Sim(σ)\pre(Sim(τ)) 6= ∅ do

{I6: assert for all σ ∈∼= and all s ∈ σ, sim(s) = Sim(σ)}
{I7: assert for all σ ∈∼=, both σ and Sim(σ) are blocks of 'S}
σ′ := σ ∩ pre(Sim(τ)); σ′′ := σ\pre(Sim(τ));
∼=:= Insert(σ′,Delete(σ,∼=));
Sim(σ′) := Sim(σ) ∩ pre(Sim(τ));
if σ′′ 6= ∅ then ∼=:= Insert(σ′′,∼=); Sim(σ′′) := Sim(σ) fi

od.

Figure 8.11: Symbolic similarity checking

with pointers from each region σ in ∼= to all regions υ in ∼= with υ ⊆ Sim(σ),
without representing the simulator set Sim(σ) explicitly.

Theorem 8.10 [Symbolic similarity checking] Given an observation structure
K with a finite similarity relation, Algorithm 8.5 terminates and computes the
symbolic simulator structure for K.

8.5 Hierarchical Reasoning

Establishing that a reactive module P implements another module Q is compu-
tationally hard. In this section, we consider simulation relations as a sufficient
condition for establishing the implementation relation between two modules.

8.5.1 Simulation preorder over modules

Every state preorder for observation structures leads to a preorder over modules.
Thus, the simulation preorder �S can be used to compare one module with
another. The reactive module Q simulates the reactive module P , denoted
P �S Q, if (1) every interface variable of Q is an interface variable of P :
intfXQ ⊆ intfXP , (2) every external variable of Q is an observable variable of
P : extlXQ ⊆ obsXP , (3) for all variables x in obsXQ and y in intfXQ, if y ≺Q x

then y ≺P x, and (4) the observation structure KQ simulates the observation
structure KP ′ for P ′ = hide (obsXP \obsXQ) in P .

Hierarchical Verification 29

As in case of the implementation preorder, if P �S Q, then the module P is
more constrained than P . The fourth requirement can informally be read as
“whatever P does is allowed by Q.” Again, we can think of Q as the (more
abstract) specification, and P as the (more detailed) implementation. The re-
lationship between simulation preorder and language preorder over states leads
to:

Proposition 8.8 [Simulation and implementation] For two reactive modules P

and Q, if P �S Q then P �L Q.

Remark 8.9 [Simulation and ∀Stl] Suppose P �S Q, and let φ be a formula
of ∀Stl. If the answer to the verification problem (Q, φ) is Yes, then the answer
to the verification problem (P, φ) is also Yes.

Given two modules P and Q such that obsXQ ⊆ obsXP , a state t of the module
P simulates a state s of P , if s �S t in the observation structure KP ′ + KQ for
P ′ = hide (obsXP \obsXQ) in P . If P �S Q then every reachable state of P is
simulated by some reachable state of Q.

Example 8.9 [Nondeterministic versus deterministic scheduling] Recall the mod-
ules Scheduler and NonDetScheduler from Example 8.2. For a state s of Sched-
uler and a state t of NonDetScheduler , let s � t if the two states assign the same
values to the variables task 1, task2, proc, new1, and new2. Verify that � is a
simulation relation: every transition of Scheduler is allowed by NonDetSched-
uler .

Example 8.10 [Synchronous versus asynchronous mutual exclusion] Let us re-
visit the two solutions to the mutual exclusion problem, namely, the modules
SyncMutex and Pete. In Example 8.1, we established that SyncMutex �L

Pete. However, SyncMutex �S Pete does not hold. To see this, first note that
if a state t of Pete simulates a state s of SyncMutex then pc1[s] = pc1[t] and
pc2[s] = pc2[t]. Consider the following trajectory of SyncMutex :

s0 : (outC , outC) → s1 : (outC , reqC) →
s2 : (outC , inC) → s0 : (outC , outC) →
s3 : (reqC , reqC) → s4 : (inC , reqC)

If s3 �S t3, then x1[t3] 6= x2[t3]. This is because in Pete if both processes are
requesting and x1 = x2, then P2 enters the critical section first, and hence,
cannot match the transition from s3 to s4. This implies that if s0 �S t0, then
x1[t0] = x2[t0] (since t0 is required to be a predecessor of t3). Continuing this line
of reasoning, if s2 �S t2, then x1[t2] = x2[t2]; if s1 �S t1, then x1[t1] = x2[t1].
Now there is no transition between t0 and t1, and thus, no such simulation
exists.

Hierarchical Verification 30

Exercise 8.16 {P2} [Synchronous vs. asynchronous message passing] Recall
the modules SyncMsg and AsyncMsg for synchronous and asynchronous mes-
sage passing protocols. Does SyncMsg �S AsyncMsg hold?

8.5.2 Compositional reasoning

Consider the implementation problem of verifying that a module implements
its specification. As explained in Section 8.2, this task can be decomposed into
subtasks using the compositional and modular properties of the implementation
preorder. To verify a particular subtask P �L Q, we can try to prove the
stronger goal P �S Q. To establish P �S Q, we can use the symbolic algorithms
for similarity checking.

It turns out that the simulation preorder itself is compositional. Thus, if P �S Q

then P‖R �S Q‖R. This helps in decomposing the verification problem for
∀Stl: if P �S Q then all ∀Stl formulas satisfied by Q‖R are also satisfied by
P‖R.

Proposition 8.9 [Compositionality of simulation] The simulation preorder �S

on modules is compositional.

Proof. Consider two reactive modules P and Q such that P �S Q. The cases
corresponding to the operations of hiding and renaming are straightforward.
We consider only parallel composition. Let R be a reactive module that is
compatible with P . For a state s of P‖R and a state t of Q‖R, let s � t iff (1)
XR[s] = XR[t], and (2) XQ[t] simulates XP [s].

We first show that � is a simulation relation. Consider s � t and s′ be a
successor of s in P‖R. Then, XQ[t] simulates XP [s], and XP [s′] is a successor
of XP [s]. Since P �S Q, there exists a state t′ of Q such that t′ is a successor
of XQ[t] in Q, and t′ simulates XP [t]. Let t′′ be the state of Q‖R such that
XQ[t′′] = t′ and XR[t′′] = XR[t]. By definition, s′ � t′′. Since XR[s′] is a
successor of XR[s] in R, it follows that XR[t′′] is a successor of XR[t] in R.
Thus, t′′ is a successor of t in Q‖R.

Along the same lines, we can establish that for every initial state s of P‖R,
there is an initial state t of Q‖R such that s � t.

Exercise 8.17 {T5} [Assume-Guarantee for Simulation] Does the assume-guarantee
theorem for implementation preorder (Theorem 8.4) hold for the simulation pre-
order �S?

8.5.3 Refinement mappings

Refinement maps, or homomorphisms, are special types of simulation relations.

Hierarchical Verification 31

p
s2

r
u2

q
t2

r
u′

2r
u1

p
s1

q
t1

K1 K2

Figure 8.12: Refinement maps versus simulation relations

Refinement maps

Let K1 = (Σ1, σ
I
1 ,→1, A, 〈〈·〉〉1) and K2 = (Σ2, σ

I
2 ,→2, A, 〈〈·〉〉2) be two

observation structures. A refinement mapping hom from K1 to K2 is a
function from the reachable region σR

1 of K1 to Σ2 such that (1) for all
s ∈ σR

1 , 〈〈hom(s)〉〉2 = 〈〈s〉〉1, (2) for every reachable transition s →1 t of K1,
hom(s) →2 hom(t), and (3) for all s ∈ σI

1 , hom(s) ∈ σI
2 .

If hom is a refinement map from K1 to K2 then the set {(s, hom(s)) | s ∈ σR
1 }

is simulation relation over the union K1 + K2.

Proposition 8.10 [Refinement maps and simulations] If there exists a refine-
ment mapping from the observation structure K1 to K2 then K1 �S K2.

For two observation structures K1 and K2, if there exists a refinement map
from K1 to K2, then K1 �S K2, and hence, K1 �L K2. Thus, we can establish
implementation relation between two modules by supplying a refinement map
from the states of the detailed module to the states of the abstract module. Ex-
istence of simulation relation between two modules, however, does not guarantee
existence of refinement maps.

Example 8.11 [Nondeterministic versus deterministic scheduling] Recall the
modules Scheduler and NonDetScheduler from Example 8.9. Given a state s

of Scheduler , let hom(s) be the state of NonDetScheduler obtained by simply
discarding the value of the variable prior . In this case, this projection map is a
refinement map, and establishes that Scheduler �S NonDetScheduler .

Example 8.12 [Refinement map vs. simulation] Consider the two observation
structures K1 and K2 shown in Figure 8.12. The relation {(s1, s2), (t1, t2), (u1, u2), (u1, u

′
2)}

Hierarchical Verification 32

is a simulation relation, and thus, K1 �S K2. However, there is no refinement
map from K1 to K2. Observe that there is a refinement map from K2 to K1,
and K2 �S K1.

Exercise 8.18 {T4} [Completeness of refinement mappings] Let P and Q be
two reactive modules such that P �L Q. Prove that there is a monitor R for P

such that there is a refinement mapping from KP‖R to KQ.

Exercise 8.19 {P3} [Verifying refinements] Write an algorithm that given two
observation structures K1 and K2 and a mapping hom from the states of K1 to
the states of K2 verifies whether or not hom is a refinement map.

8.6 Stutter-closed Implementation

In Chapter 6, we saw how each state equivalence leads to its stutter-closed
version obtained by adding extra transitions that obliterate the distinction due
to the number of rounds for which an observation stays unchanged. In the same
manner, every state preorder leads to a stutter-closed version: two states of an
observation structure K are related according to the stutter-closed version of a
preorder �, if those two states are related according to � in the stutter-closure
of K.

Stutter closure of state preorders

Let � be a state preorder, and let K be an observation structure. For two
states s and t of K, s�

K
t, for the stutter closure � of �, if s �KS t. The

induced state preorder � is called the stutter closure of �.

Remark 8.10 [Alternative characterization of stutter closure of trace preorder]
Let A be a set of symbols. Let a0...m be a word over A. A stutter-extension of
a is a word that can be obtained from a by repeating each symbol of a finitely
many times: a word b over A is a stutter-extension of a iff there exist positive
integers i0, i1, . . . im such that b = ai0

0 ai1
1 . . . aim

m . For two states s and t of an
observation structure K, s�L t holds if for every source-s trace a there exists a

source-t trace b and a word c such that c is a stutter-extension of a and is also
a stutter-extension of b.

Stutter closure of trace equivalence is the weakest equivalence we have con-
sidered so far: it is less distinguishing than trace equivalence, and it is less
distinguishing than weak bisimilarity.

The stutter closure of the trace preorder over observation structures leads to a
way of comparing two modules, called weak implementation, denoted �L.

Hierarchical Verification 33

Example 8.13 [Equivalence of synchronous vs.asynchronous message passing]
Recall the modules SyncMsg and AsyncMsg for synchronous and asynchronous
message passing protocols. The two modules are not trace equivalent, however,
they are equivalent according to the equivalence induced by weak implementa-
tion.

The weak-implementation relation plays an important role in reasoning about
asynchronous systems.

Remark 8.11 [Stutter-extensions and asynchronous modules] If P is an asyn-
chronous module, then its language LP is closed under stutter-extension: if a is
a trace of P then every stutter-extension of a is also a trace of P .

The weak implementation relation is compositional as long as we use only asyn-
chronous modules.

Theorem 8.11 [Compositionality of weak implementation] For two modules P

and Q, if P �L Q then (1) for variable x of P , hide x in P �L hide x in Q;

(2) for every variable renaming ρ, P [ρ]�LQ [ρ]. For asynchronous modules P ,

Q, and R, if P �L Q and R is compatible with P , then R is compatible with Q

and P‖R�L Q‖R.

Exercise 8.20 {T3} [Compositionality of weak implementation] Prove Theo-
rem 8.11. Show that the preorder �L is not compositional with respect to
parallel composition with all modules; that is, find modules P , Q, and R such
that P �L Q, but P‖R�L Q‖R does not hold.

The assume-guarantee theorem for the implementation relation holds for the
weak-implementation relation provided we consider only asynchronous modules.

Theorem 8.12 [Assume-guarantuee reasoning for weak implementation] Let
P1 and P2 be two compatible asynchronous reactive modules, and let Q1 and Q2

be two compatible asynchronous reactive modules. If P1‖Q2 �
L Q1, Q1‖P2 �

L Q2,
and every external variable of Q1‖Q2 is an observable variable of P1‖P2, then
P1‖P2 �

L Q1‖Q2.

Exercise 8.21 {T3} [Assume-guarantuee for weak implementation] Prove The-
orem 8.12.

Weak similarity

The stutter closure �S of simulation preorder is called weak simulation, and the

stutter closure ∼=S of similarity is called weak similarity.

Hierarchical Verification 34

Trace Equivalence 'L

Similarity 'S

Bisimilarity 'B

u

u

Weak Trace Equivalence ∼=L

Weak Similarity ∼=S

Weak Bisimilarity ∼=B

u

u

�

�

�

Figure 8.13: Relationship among state equivalences

Remark 8.12 [Weak simulation] Weak simulation (and weak similarity) can be
defined directly without considering the stutter closure operation on structures
explicitly. Let K = (Σ, σI ,→, A, 〈〈·〉〉) be an observation structure. A weak-
simulation � ⊆ Σ2 of K is a binary relation on the state space such that for all
states s and t of K, if s� t then (1) 〈〈s〉〉 = 〈〈t〉〉 and (2) if s → s′, then there is
a state t′ such that s′ � t′ and there exists a trajectory t0...m of K with t0 = t,
tm = t′, and 〈〈ti〉〉 = 〈〈t〉〉 for 0 ≤ i < m. The state t weakly-simulates the state s

if there is a weak simulation � such that s� t. Now, s�S t if t weakly-simulates
s.

We know that similarity is more distinguishing than trace equivalence, but less
distinguishing than bisimilarity. Analogously, weak similarity is more distin-
guishing than weak trace equivalence, but less distinguishing than weak bisim-
ilarity.

Exercise 8.22 {T3} [Weak similarity vs. trace equivalence] Establish that
weak similarity and trace equivalence are incomparable.

Exercise 8.23 {T4} [Weak similarity and waiting-for fragment of ∀Stl] Let
∀StlW be the fragment of ∀Stl that contains no next-time operators, that is,
its formulas are generated by the grammar

φ ::= p | φ ∨ φ | φ ∧ φ | φ∀Wφ.

Establish that weak similarity is a fully abstract semantics for this fragment.

