
Contents

12 Automata-theoretic Liveness Verification 1

12.1 ω-Automata . 1
12.2 Operations on ω-automata . 7

12.2.1 Product . 8
12.2.2 Complementation . 10

12.3 Expressiveness . 16
12.3.1 ω-regular languages . 16
12.3.2 Expressiveness of ω-automata 18
12.3.3 Deterministic ω-automata 19

0

Computer-Aided Verification

c© Rajeev Alur and Thomas A. Henzinger January 27, 2005

Chapter 12

Automata-theoretic

Liveness Verification

In this chapter, we extend the automata-theoretic approach studied in Chapter 8
for safety requirements to liveness requirements. In the automata-theoretic
liveness verification, a fair module is viewed as a generator of an ω-language,
namely, the set of its fair traces, the requirement is specified by an ω-automaton
that accepts only the desired ω-traces, and the verification problem corresponds
to inclusion between these two ω-languages.

12.1 ω-Automata

A fair structure K consists of an observation structure K and a fairness as-
sumption F . Each fair structure defines the ω-language LK over the set of its
observations consisting of the set of ω-traces corresponding to initialized F -fair
ω-trajectories. Fair structures can be used to specify requirements also. In their
role as a specification language, fairness constraints are usually specified using
regions rather than actions. In this role, fairness constraints should be viewed
as accepting conditions that classify ω-trajectories into accepting and rejecting
rather than assumptions about fair resolution of choice. We will concentrate on
two types of accepting conditions: Büchi acceptance and Streett acceptance.

1

Automata-theoretic Liveness Verification 2

Büchi automata

Finite structures with a single weak-fairness constraint specified by a region are
called Büchi automata.

Büchi automaton

A Büchi automaton M consists of (1) a finite observation structure K and
(2) [the repeating region] a region σA of K. An initialized ω-trajectory s

of K is accepted by the Büchi automaton M if si ∈ σA for infinitely many
positions i ≥ 0. The ω-language LM of the Büchi automaton M is the
set of traces corresponding to initialized accepted trajectories of M. The
Büchi automaton (K, σA) is deterministic if the observation structure K is
deterministic.

Note that syntactically a Büchi automaton is identical to an ordinary automa-
ton. In an ordinary automaton, a (finite) trajectory is accepted if it terminates
in an accepting state; in a Büchi automaton, an ω-trajectory is accepted if its
visits a repeating state infinitely often.

Example 12.1 [Büchi languages] Let A = {a, b}. The Büchi automaton M1

of Figure 12.1 accepts the response language (b∗a)ω consisting of ω-words that
contain infinitely many a symbols. The Büchi automaton M2 of Figure 12.1
accepts the persistence language A∗aω consisting of ω-words with a suffix con-
taining only a symbols. Note that the automaton M2 is nondeterministic (it
guesses the beginning of the suffix containing only a symbols).

Let A = {a, b, c}. The nondeterministic Büchi automaton M3 of Figure 12.1
accepts the reactivity language consisting of ω-words that contain either only
finitely many a symbols or infinitely many b symbols. Note that “finitely many
a or infinitely many b” is equivalent to “infinitely many b or eventually always
c.”

Remark 12.1 [Multi-Büchi automaton] A multi-Büchi automaton M consists
of (1) a finite observation structure K, and (2) a finite set F of repeating re-

gions of K. An initialized ω-trajectory s of K is accepted by the multi-Büchi
automaton M if for every repeating region σ ∈ F , si ∈ σ for infinitely many
positions i ≥ 0. Thus, a multi-Büchi automaton is a weak-fair structure all of
whose weak-fairness constraints are specified by regions.

Exercise 12.1 {P2} [CoBüchi automata] A CoBüchi automaton M consists of
(1) a finite observation structure K and (2) [the stable region] a region σA of
K. An initialized ω-trajectory s of K is accepted by the CoBüchi automaton
M if it has a suffix all of whose states are in the stable region: there exists i ≥ 0
such that sj ∈ σA for all j ≥ i. Note that syntactically a CoBüchi automaton is

Automata-theoretic Liveness Verification 3

c

Automaton M1

Automaton M3

Automaton M2

b

a b

a b

c

Figure 12.1: Sample Büchi automata

like a Büchi automaton or an ordinary automaton. Semantically, the CoBüchi
automaton (K, σA) is like the fair structure (K, {(Σ\σA, ∅)}).

Consider the alphabet A = {a, b}. (1) Find a CoBüchi automaton whose ω-
language is the persistence language A∗aω consisting ω-words with a suffix con-
taining only a symbols. (2) Consider the response language (b∗a)ω consisting of
ω-words with infinitely many a symbols. Can you draw a CoBüchi automaton
that accepts this langauge?

Streett Automata

Finite structures with a fairness constraints specified by regions are called
Streett automata.

Automata-theoretic Liveness Verification 4

a

Streett Automaton M

Fairness constraint =(s, t)

s t

u

c

b

Figure 12.2: Sample Streett automaton

Streett automaton

A Streett automaton M consists of (1) a finite observation structure K and
(2) [the Streett constraints] a finite set F of pairs of regions. An initialized
ω-trajectory s of K is accepted by the Streett automaton M if for every
Streett constraint (σ, τ) ∈ F , if s is σ-fair then s is τ -fair. The ω-language

LM of the Streett automaton M is the set of ω-traces corresponding to
initialized accepted ω-trajectories of M.

Remark 12.2 [Büchi as a special case of Streett] A Büchi automaton (K, σA)
can be viewed as the Streett automaton (K, {(Σ, σA)}) with a single Streett
constraint.

Example 12.2 [Streett language] Let A = {a, b, c}. The nondeterministic
Büchi automaton M3 of Figure 12.1 accepts the reactivity language consist-
ing of ω-words that contain either only finitely many a symbols or infinitely
many b symbols. The same ω-language is accepted by the deterministic Streett
automaton M of Figure 12.2. There is a single Streett constraint ({s}, {t}).

Exercise 12.2 {P2} [Rabin automata] A Rabin automaton M is syntactically
identical to a Streett automaton, and consists of (1) a finite observation structure
K and (2) [the Rabin constraints] a finite set F of pairs of regions. An initialized
ω-trajectory s of K is accepted by the Rabin automaton M if there exists a
Rabin constraint (σ, τ) ∈ F such that s is σ-fair and but not τ -fair. Thus,

Automata-theoretic Liveness Verification 5

semantically a Rabin automaton is the dual of the Streett automaton: Streett
acceptance has the form

∧
(σ, τ) ∈ F. [¬(σ-fair) ∨ τ -fair],

while Rabin acceptance requires
∨

(σ, τ) ∈ F. [σ-fair ∧ ¬(τ -fair)].

Let A = {a, b, c}. Find a deterministic Rabin automaton M accepting the
reactivity language consisting of ω-words that contain either only finitely many
a symbols or infinitely many b symbols.

Exercise 12.3 {T3} [Muller automata] A Muller automaton M is syntactically
like a multi-Büchi automaton, and consists of (1) a finite observation structure
K and (2) [the Muller acceptance] a finite set F of regions of K. An initialized
ω-trajectory s of K is accepted by the Muller automaton M if the set {s ∈ Σ |
si = s for infinitely many i ≥ 0} of states repeating infinitely often along s is
in F . Show that Streett automata as well as Rabin automata are special cases
of Muller automata.

The ω-language-inclusion problem

The ω-language-inclusion problem asks whether every ω-trace accepted by one
ω-automaton is also accepted by another ω-automaton.

The ω-language-inclusion problem

An instance (M1,M2) of the ω-language-inclusion problem consists of two
ω-automata M1 and M2 over the same observation alphabet A. The answer
to the ω-language-inclusion problem (M1,M2) is Yes if LM1

⊆ LM2
, and

otherwise No.

Note that in an instance (M1,M2) of the ω-language-inclusion problem, each
of the ω-automata M1 and M2 may be either a fair structure, or a Büchi
automaton, or a Streett automaton.

Automata as specifications

ω-automata can be used for specifying requirements of fair modules. As in case
of the logic Sal, the observations of the requirements automaton are boolean
expressions over the observable variables of modules. We define the fair state
logic Lal whose formulas are Büchi and Streett automata.

Automata-theoretic Liveness Verification 6

yx

Figure 12.3: The Lal formula M∀U

pc
1
6= reqC

Figure 12.4: Starvation freedom in live automaton logic

Live automaton logic

A formula of the fair state logic live automaton logic (Lal) is a Büchi or a
Streett automaton M whose observations are boolean expressions.

Given a formula M of Lal, a fair structure K is a M-structure if each
observation of K is a valuation for a superset of the variables appearing in
the observations of M.

The satisfaction relation for Lal is defined by:

s |=K M iff for every source-s fair ω-trajectory s of K
there is an accepting ω-trace a ∈ LM such that
for all i ≥ 0, si |= ai.

In other words, a state s of K satisfies the requirement specified by the ω-
automaton M if for every source-s fair ω-trace a of K, we can find an initialized
accepting ω-trace b of M such that every observation in a is consistent with the
corresponding expression in b.

Example 12.3 [Lal] The Lal formula M∀U shown in Figure 12.3 asserts that,
given a state s, every source-s fair ω-trajectory contains a state satisfying y

which is preceded only by states satisfying x. The formula M∀U can be inter-
preted at states of a fair structure whose observations assign values to x and y.
It follows that the Lal formula M∀U is equivalent to the Ctl formula x∀Uy.
Contrast the specification M∀U with the Sal specification MW corresponding
to the Stl formula x∀Wy (see Example 8.2).

Automata-theoretic Liveness Verification 7

Example 12.4 [Starvation freedom in live automaton logic] Recall the star-
vation freedom requirement for mutual exclusion protocols. The requirement
that pc1 6= reqC be a recurrent is expressed in Lal by the Büchi automaton of
Figure 12.4.

Lal model checking

The model-checking problem for Lal can be reduced to the ω-language-inclusion
problem. As in case of Sal, we expand each ω-automaton M of Lal to a larger
automaton EM whose observations are valuations to the variables appearing in
the observations of M. Recall the definition of the expansion operator E from
Chapter 8. To obtain expansion of an ω-automaton, we apply the expansion
operation to the underlying observation structure, and modify the accepting
condition appropriately.

Expansion of an Lal automaton

For a Büchi automaton M = (K, σA) given as a Lal formula, the expansion

EM is another Büchi automaton: (1) the observation structure of EM is
EK, and (2) the repeating region of EM is σA ⇑.

For a Streett automaton M = (K, F) given as a Lal formula, the expansion

EM is another Streett automaton: (1) the observation structure of EM
is EK, and (2) for every (σ, τ) ∈ F , the automaton EM has the Streett
constraint (σ ⇑, τ ⇑).

Exercise 12.4 {P1} [Lal expansion] Draw the expanded Büchi automaton
corresponding to the Lal specification M∀U of Figure 12.3.

It follows that checking whether a fair structure satisfies an Lal automaton
M is equivalent to checking whether K satsifies the expanded ω-automaton
EM, which in turn corresponds to checking whether the fair language of K is
contained in the fair language of EM.

Proposition 12.1 [Lal model checking] The Lal model-checking problem (K,M)
and the ω-language-inclusion problem (K, EM) have the same answer.

12.2 Operations on ω-automata

To solve the ω-language inclusion problem (M1,M2), we first obtain an ω-
automaton that accepts the complement of the ω-language accepted by M2,
then construct its product with M1, and solve the fair emptiness problem on
the resulting ω-automaton.

Automata-theoretic Liveness Verification 8

12.2.1 Product

Given two ω-automata M1 and M2, we wish to define another ω-automaton
that accepts the intersection of the ω-languages of M1 and M2. For this pur-
pose, we resort to the product construction described in Section 8.3.2 over ob-
servation structures. Consider two observation structures K1 and K2, and let
K1 × K2 be their product. Let s be an ω-trajectory of the product. Then,
by the definition of the product, there exists an ω-trajectory t of K1 and an
ω-trajectory u of K2 such that s = (t0, u0)(t1, u1) · · ·. Observe that, for a region
σ of K1, the ω-trajectory t of K1 is σ-fair iff the ω-trajectory s of the product
is (σ ⇑)-fair. Similarly, for a region σ of K2, the ω-trajectory u of K2 is σ-fair
iff the ω-trajectory s of the product is (σ ⇑)-fair. In other words, fairness with
respect to a region σ in a component translates to fairness with respect to the
lifted region σ ⇑ in the product. Similarly, fairness with respect to an action
α in a component translates to fairness with respect to the lifted action α ⇑ in
the product. This leads to a natural definition of product for ω-automata.

Product of ω-automata

Let M1 = (K1, F1) and M2 = (K2, F2) be two Streett automata. The
product M1 ×M2 is the Streett automaton (K1 ×K2, {(σ ⇑, τ ⇑) | (σ, τ) ∈
F1 ∪ F2}).

Let K1 = (K1, F1) and K2 = (K2, F2) be two fair structures. The product
K1 ×K2 is the fair structure (K1 × K2, {(α ⇑, β ⇑) | (α, β) ∈ F1 ∪ F2}).

Proposition 12.2 [Product of ω-automata] If M1 and M2 are two Streett

automata, then LM1×M2
= LM1

∩ LM2
. If K1 and K2 are two fair structures,

then LK1×K2
= LK1

∩ LK2
.

Remark 12.3 [Cost of product] Let M1 be a Streett automaton with n1 states,
m1 transitions, and `1 Streett constraints. Let M2 be a Streett automaton
with n2 states, m2 transitions, and `2 Streett constraints. Then, the product
M1 ×M2 has at most n1 · n2 states, at most m1 · m2 transitions, and `1 + `2

Streett constraints.

Product of Büchi automata

The product of two Büchi automata (K1, σ
A
1) and (K2, σ

A
2) can be defined to be

the multi-Büchi automaton (K1×K2, {σA
1 ⇑, σA

2 ⇑}). However, by introducing a
counter, as described in Section 11.3.2, we can define product of Büchi automata
to be a Büchi automaton. The states of the product are, then, of the form
(s, t, i), where s is a state of K1, t is a state of K2, and i is a counter that can
be either 1 or 2. The counter is updated from 1 to 2 when an accepting state
of K1 is visited, and from 2 to 1 when an accepting state of K2 is visited. The

Automata-theoretic Liveness Verification 9

Product Automaton M1 ×M2

a b

s t

Automaton M2

a b

u v

a b

s, u, 2 t, v, 2

a b

s, u, 1 t, v, 1

Figure 12.5: Product construction for Büchi automata

accepting condition of the product requires infinitely many updates from 2 to
1.

Product of Büchi automata

Let M1 = (Σ1, σ
I
1 ,→1, A, 〈〈·〉〉1, σ

A
1) and M2 = (Σ2, σ

I
2 ,→2, A, 〈〈·〉〉2, σ

A
2)

be two Büchi automata. The product M1 × M2 is the Büchi automaton
(Σ, σI ,→, A, 〈〈·〉〉, σA):

• Σ = {(s1, s2, i) | s1 ∈ Σ1, s2 ∈ Σ2, 〈〈s1〉〉1 = 〈〈s2〉〉2, and i ∈ {1, 2}};

• (s1, s2, i) ∈ σI iff s1 ∈ σI
1 , s2 ∈ σI

2 , and i = 1;

• (s1, s2, i) → (t1, t2, j) iff s1 →1 t1, s2 →2 t2, if i = 1 then if s1 ∈ σA
1

then j = 2 else j = 1, and if i = 2 then if s2 ∈ σA
2 then j = 1 else

j = 2;

• 〈〈(s1, s2, i)〉〉 = 〈〈s1〉〉1 = 〈〈s2〉〉2;

• (s1, s2, i) ∈ σA if i = 2 and s2 ∈ σA
2 .

Proposition 12.3 [Product of Büchi automata] If M1 and M2 are two Büchi

automata, then LM1×M2
= LM1

∩ LM2
.

Automata-theoretic Liveness Verification 10

{s, u}

b

a

{s} {t}

Figure 12.6: Subset construction does not work for Büchi acceptance

Example 12.5 [Product of Büchi automata] Consider the two Büchi automata
M1 and M2 of Figure 12.5. The automaton M1 accepts all ω-words that
contain infinitely many a symbols, while M2 accepts all ω-words that contain
infinitely many b symbols. The result of applying the product construction
contains 4 states, of which the only accepting state is (t, v, 2). Verify that the
product accepts precise those ω-words that contain infinitely many a symbols
as well as infinitely many b symbols.

Remark 12.4 [Product of deterministic Büchi automata] If M1 and M2 are
deterministic Büchi automata, then so is their product M1 × M2. Thus, the
class of ω-languages definable by deterministic Büchi automata is closed under
intersection.

Exercise 12.5 {T2} [Product of CoBüchi automata] Given two CoBüchi au-
tomata M1 and M2, define a CoBüchi automaton M1 ×M2 that accepts the
intersection of the ω-languages of M1 and M2.

12.2.2 Complementation

We turn our attention to the problem of complementing a Büchi automaton.
Recall that for an ordinary automaton, its complement is constructed by first
determinizing the observation structure using the subset construction, followed
by completion by adding dummy states, followed by inversion of the accepting
condition. Given a Büchi automaton M = (K, σA), can we add accepting
conditions to the determinized structure ∆K without changing the ω-language
accepted by M? The obstacle in such an approach is illustrated by the following
example.

Example 12.6 [Subset construction and Büchi automata] Recall the Büchi au-
tomaton M2 from Figure 12.1 that accepts the persistence language A∗aω. The

Automata-theoretic Liveness Verification 11

determinized structure obtained by subset construction is shown in Figure 12.6.
Declaring the state corresponding to the subset {s, u} to be repeating does not
preserve the ω-language of M2.

The problem with the subset construction is that states of the determinized
structure may contain both repeating and nonrepeating states. Complementing
a nondeterministic Büchi automaton turns out to be a nontrivial problem. Con-
sequently, existing model checkers do not support nondeterministic ω-automata
as specifications. However, understanding the complementation procedure pro-
vides insights into the structure of ω-automata.

We begin by some preliminary definitions. Let A be a finite alphabet. An
equivalence relation ∼⊆ A∗ ×A∗ over words over A is said to be a congruence

(with respect to concatenation) if for all words a, b, and c, if a ∼ b then a·c ∼ b·c
and c ·a ∼ c ·b. By a finite equivalence relation, we mean an equivalence relation
with finitely many equivalence classes.

Let M = (Σ, σI ,→, A, 〈〈·〉〉, σA) be a Büchi automaton. We are going to establish
that both LM and and its complement can be expressed as finite unions of ω-
languages of the form L1 · Lω

2 , where L1 and L2 are blocks of a certain finite
congruence on A∗.

For two state s and t of M, and a word a0...m over A, define s αT a t

if there is a trajectory s0...m of M such that s0 = s, sm = t, and
〈〈si〉〉 = ai for all 0 ≤ i ≤ m.

That is, s αT a t means that the trace a can lead the automaton from the initial
state s to the final state t.

For two state s and t of M, and a word a0...m over A, define s αT a′ t if
there is a trajectory s0...m of M such that s0 = s, sm = t, 〈〈si〉〉 = ai

for all 0 ≤ i ≤ m, and sj ∈ σA for some 0 ≤ j ≤ m.

That is, s αT a′ t means that the trace a can lead the automaton from the initial
state s to the final state t via a trajectory that visits some repeating state. Now
we are ready to define the desired equivalence relation on A∗ induced by M:

For two words a and b over A, a ∼M b iff for all states s and t of

M, (1) s αT a t iff s αT b t, and (2) s αT a′ t iff s αT b
′
t.

First, we note that the equivalence ∼M is a finite congruence:

Lemma 12.1 [Congruence] The equivalence relation ∼M over A∗ is a congru-

ence with respect to concatenation.

Proof. Left as an exercise.

Automata-theoretic Liveness Verification 12

Lemma 12.2 [Finiteness] The equivalence relation ∼M over A∗ is finite, and

has at most 22n2

classes if M has n states.

Proof. For every two states s and t of M, let Ls,t be the language containing
words a such that s αT a t, and let L′

s,t be the language containing words a such

that s αT a′ t. Let Π be the set of these 2n2 languages. Now an equivalence class
of ∼M corresponds to a subset of Π: given a subset Π′ ⊆ Π, the intersection

[
⋂

L ∈ Π′. L] ∩ [
⋂

L 6∈ Π′. A∗\L]

defines an equivalence class of ∼M. It follows that the number of subsets of Π
is an upper bound for the number of equivalence classes of ∼M.

The next lemma asserts a saturation property of the ∼M-equivalence classes
with respect to the ω-language accepted by M:

Lemma 12.3 [Saturation] Let L1 and L2 be two equivalence classes of the con-

gruence ∼M. Then, if L1 · Lω
2 ∩ LM is nonempty then L1 · Lω

2 ⊆ LM.

Proof. Let L1 and L2 be two equivalence classes of ∼M. Suppose L1 ·L
ω
2 ∩LM

is nonempty, and contains the ω-word a. Since a ∈ L1 · Lω
2 , it is of the form

b0 · b1 · b2 · · ·, where the word b0 is in L1 and for i ≥ 1, the word bi is in L2.
Since a is accepted by M, there exists an initialized accepting ω-trajectory
corresponding to a. Thus, there exist states s0, s1, . . . such that

s0 αT b0 s1 αT b1 s1 αT b2 · · ·

Furthermore, for infinitely many indices i, si αT bi
′
si+1.

Now consider another word c ∈ L1 · Lω
2 . We need to establish that M accepts

c also. The ω-word c is of the form d0 · d1 · d2 · · · such that the word d0 is in L1

and for i ≥ 1, the word di is in L2. Since L1 and L2 are equivalence classes of
∼M, bi ∼M di for all i ≥ 0. It follows that

s0 αT d0 s1 αT d1 s1 αT d2 · · ·

and for infinitely many indices i, si αT di
′
si+1. We conclude that there is an

initialized accepting trajectory corresponding to the ω-word c.

The next lemma asserts that ω-languages of the form L1 ·Lω
2 cover the set of all

ω-words, provided L1, L2 range over equivalence classes of a finite congruence.

Lemma 12.4 [Coverage] Let ∼ be a finite congruence over A∗, and let a be an

ω-word over A. Then, there exist equivalence classes L1 and L2 of ∼ such that

a ∈ L1 · Lω
2 .

Automata-theoretic Liveness Verification 13

Proof. Let ∼ be a finite congruence relation over A∗, and let a be an infinite
word over A. We say that two indices i and j merge at an index k > i, j if
ai...k ∼ aj...k. For two indices i and j, define i ∼= j if they merge at some index.
Verify that ∼= is an equivalence relation over the set of nonnegative integers.
Furthermore, given a finite subset D of nonnegative integers such that D has
more elements than the number of equivalence classes of ∼, if we choose k such
that k > i for all i ∈ D, then the set {ai...k | i ∈ D} must contain two ∼-
equivalent words. It follows that the equivalence relation ∼= itself is finite (the
number of equivalence classes of ∼= is bounded by the number of equivalence
classes of ∼).

Finiteness of ∼= implies that there exists an infinite sequence i0 < i1 < i2 < · · ·
of indices that are ∼=-equivalent to each other. Note that for every j ≥ 1, all
the indices i0, i1, . . . ij merge at some k > ij . Without loss of generality, we
may assume that for every j ≥ 1, all the indices i0, i1, . . . ij merge at ij+1 (this
is because we can delete indices from the original sequence, and if i0, i1, . . . ij
merge at k then they merge at every k′ > k as ∼ is a congruence). It follows
that there is an infinite sequence i0, i1, i2, . . . of indices such that

1. all the words in {ai0...ij
| j ≥ 1} belong to the same equivalence class of

∼, let this class be L2,

2. for all j < j′ < k, the indices ij and ij′ merge at ik.

From (1), ai0...i1 is in L2. For all j ≥ 1, ai0...ij+1
is in L2 by (1), and ai0...ij+1

is
∼-equivalent to aij ...ij+1

by (2). It follows that for all j ≥ 0, aij ...ij+1
is in L2.

It follows that the suffix ai0... is in Lω
2 . This completes the proof.

Since ∼M is a finite congruence, it follows that the set

{L1 · L
ω
2 | L1, L2 are equivalence classes of ∼M}

covers Aω, and then, by the saturation property, the ω-language accepted by
M corresponds to a subset of this set, and the complement defines the comple-
mentary language.

Corollary 12.1 [Structure of Büchi language] The ω-language LM accepted by

the Büchi automaton M equals
⋃

{L1 · L
ω
2 | L1, L2 are equivalence classes of ∼M and L1 · L

ω
2 ∩ LM 6= ∅},

and the complementary ω-language Aω\LM equals
⋃

{L1 · L
ω
2 | L1, L2 are equivalence classes of ∼M and L1 · L

ω
2 ∩ LM = ∅}.

Proof. Follows from Lemmas 12.1, 12.2, 12.3, and 12.4.

The next proposition asserts that if L1 and L2 are two regular languages then
the ω-language L1 · Lω

2 is accepted by a Büchi automaton.

Automata-theoretic Liveness Verification 14

Proposition 12.4 [Regular concatenation] If L1 and L2 are two regular lan-

guages over A then the ω-language L1 ·Lω
2 is accepted by some Büchi automaton.

Proof. Let L1 be a regular language accepted by the automaton M1 =
(Σ1, σ

I
1 ,→1, A, 〈〈·〉〉1, σ

A
1), and let L2 be a regular language accepted by the au-

tomaton M2 = (Σ2, σ
I
2 ,→2, A, 〈〈·〉〉2, σ

A
2). The ω-automaton accepting L1 ·Lω

2 is
obtained by taking disjoint union of the two automata M1 and M2, and adding
transitions from accepting states of M1 to the initial states of M2, and from
accepting states of M2 to the initial states of M2. Specifically, define the Büchi
automaton M over the alphabet M: (1) the state-space of M is Σ1 ∪ Σ2 (as-
suming Σ1 and Σ2 are disjoint sets), (2) the initial region of M is σI

1 , (3) the set
of transitions of M equals →1 ∪ →2 ∪(σA

1 ×σI
2)∪ (σA

2 ×σI
2), (4) the observation

of a state s of M is 〈〈s〉〉1 if s ∈ Σ1 and 〈〈s〉〉2 otherwise, (5) the repeating region
of M is σA

2 . Verify that an ω-word a is accepted by the Büchi automaton M
precisely when it belongs to L1 · L

ω
2 .

Remark 12.5 [Regular concatenation] If the regular language L1 is accepted
by an automaton with n1 states, and the regular language L2 is accepted by an
automaton with n2 states, then L1 ·Lω

2 is accepted by a Büchi automaton with
n1 + n2 states.

Theorem 12.1 [Büchi Theorem on Complementation Closure] Given a Büchi

automaton M, there exists a Büchi automaton M′ such that LM′ = Aω\LM.

Proof. Let M be a Büchi automaton. The languages Ls,t and L′
s,t defined

in the proof of Lemma 12.2 are regular languages. Since regular languages are
closed under complement and intersection, from the proof of Lemma 12.2 it
follows that every equivalence class of ∼M is a regular language. By Proposi-
tion 12.4, for two equivalence classes L1 and L2 of ∼M, the ω-language L1 ·L

ω
2

is accepted by a Büchi automaton. Since Büchi automata are closed under
union, from Corollary 12.1, it follows that Aω\LM is accepted by some Büchi
automaton.

Complexity of Complementation

Let us now analyze the bound on the size of the Büchi automaton accepting
the complement of LM obtained by our construction. Suppose M has n states.
Recall that Ls,t, for two states s and t of M, is the language containing words
a such that s αT a t. It follows that there an automaton accepting Ls,t with n

states (use the same states and transitions of M, but declare s to be initial and
t to be accepting). The language L′

s,t containing words a such that s αT a′ t can
be accepted by an automaton with 2n states (the state-space of M is doubled
to keep track of whether an accepting state has been visited or not). It follows
that the language A∗\Ls,t is accepted by an automaton with 2n states, and

Automata-theoretic Liveness Verification 15

the language A∗\L′
s,t is accepted by an automaton with 4n states (complemen-

tation may require determinization). Recall that an equivalence class of ∼M

corresponds to a subset Π′ of the set Π containing 2n2 languages Ls,t, L′
s,t. Such

an equivalence class Π′ is defined by the product of the automata accepting L

for L ∈ Π′ and the automata accepting A∗\L for L 6∈ Π′. Consequently, the
bound on the size of the automaton accepting an equivalence class of ∼M is
(2n)n2

· (4n)n2

, which equals 23n3

.

The number of states of the Büchi automaton accepting L1 ·Lω
2 equals the sum

of the number of states of the automata accepting L1 and L2. Thus, for two
equivalence classes L1 and L2 of ∼M, there is a Büchi automaton with 23n3+1

states accepting L1 · Lω
2 .

The number of states of the Büchi automaton accepting the union of ω-languages
equals the sum of the number of states of the Büchi automata accepting the
disjuncts. Since the number of pairs of equivalence classes of ∼M is 24n2

, from
Corollary 12.1, the next theorem follows.

Theorem 12.2 [Complexity of Büchi complementation] Given a Büchi au-

tomaton M with n states, there exists a Büchi automaton M′ with 23n3+4n2+1

states such that LM′ = Aω\LM.

Note that to construct the desired complement automaton, we need to construct,
for every pair L1 and L2 of equivalence classes of ∼M, the Büchi automaton
accepting L1 · Lω

2 , and check if it has a nonempty intersection with LM. We
have already outlined the product construction to obtain intersection of the
languages accepted by two Büchi automata. Algorithms for checking fair cycles
from Chapter 10 can be used to check for emptiness.

Remark 12.6 [Safra’s Construction] The complementation construction pre-

sented here yields an automaton with 23n3+4n2+1 states. Better constructions
are known. In particular, Safra’s complementation algorithm produces an au-
tomaton with 2O(n·log n) states. This is essentially optimal: 2n·log n is a lower
bound on the number of states necessary to define complements of a family of
Büchi automata.

Complementing Streett automata

To establish that a Streett automaton can be complemented, we show that every
Streett automaton has a language-equivalent Büchi automaton.

Proposition 12.5 [From Streett to Büchi] Let M be a Streett automaton over

A. There exists a Büchi automaton M′ over A such that LM = LM′ .

Proof. Let M = (Σ, σI ,→, A, 〈〈·〉〉, F) be a Streett automaton. Recall that an
ω-trajectory s is F -fair iff there exists a subset F ′ ⊆ F of Streett constraints

Automata-theoretic Liveness Verification 16

and an index i ≥ 0 such that (1) for every (σ, τ) ∈ F , s is τ -fair, and (2) for
every (σ, τ) 6∈ F , sj 6∈ σ for all j ≥ i.

Suppose F has ` Streett constraints. The Büchi automaton M′ has 2`+1 copies
of the observation structure of M, an initial copy together with a copy for every
subset F ′ ⊆ F of Streett constraints of M. The automaton starts in the initial
copy, and at some point, guesses the set F ′ ⊆ F of Streett constraints (σ, τ)
such that the region τ is going to repeat infinitely many times, and switches to
the copy corresponding to F ′. The copy corresponding to the set F ′ ensures
that, for every (σ, τ) ∈ F ′, τ is visited infinitely often, and for every (σ, τ) 6∈ F ′,
σ is not visited. To enforce that, for every (σ, τ) ∈ F ′, τ is visited infinitely
often, we introduce a counter as in the translation from multi-Büchi constraints
to Büchi constraint. To enforce that, for every (σ, τ) 6∈ F ′, σ is not visited, we
delete the states in σ. The formal definition of M′ is left as an exercise.

Remark 12.7 [From Streett to Büchi] If M is a Streett automaton with n

states and ` Streett constraints, the corresponding language-equivalent Büchi
automaton constructed according to the proof of Proposition 12.5, has n+n·`·2`

states. Thus, simulating a set of Streett constraints by a single Büchi constraint
causes a blow-up exponential in the number of constraints. Such a blow-up can
be shown to be essential.

Given a Streett automaton, we can first construct the equivalent Büchi automa-
ton, and then complement it using the complementation construction for Büchi
automata.

Theorem 12.3 [Complementation of Streett automata] Given a Streett au-

tomaton M with n states and ` Streett constraints, there exists a Büchi au-

tomaton M′ with 2O(n3
·23`) states such that LM′ = Aω\LM.

Exercise 12.6 {T3} [Complementing deterministic Streett automata] Let M =
(K, F) be a Streett automaton such that K is a deterministic and complete ob-
servation structure. Show that if F is interpreted as a Rabin accepting condition,
then the resulting language is the complement of LM.

12.3 Expressiveness

12.3.1 ω-regular languages

In Chapter 10, we defined different ways of constructing ω-languages from lan-
guages of finite words. In particular, we defined the operators safe, guar, recur,
and persist. If the languages to which these operators are applied are regular,
then the resulting ω-languages are ω-regular.

Automata-theoretic Liveness Verification 17

ω-regular languages

The ω-language L ⊆ Aω is a regular-safety language if there is a regular
language L ⊆ A∗ such that L = safe(L). The ω-language L ⊆ Aω is
a regular-guarantee language if there is a regular language L ⊆ A∗ such
that L = guar(L). The ω-language L ⊆ Aω is a regular-response language

if there is a regular language L ⊆ A∗ such that L = recur(L). The ω-
language L ⊆ Aω is a regular-persistence language if there is a regular
language L ⊆ A∗ such that L = persist(L).

The ω-language L ⊆ Aω is ω-regular if it is a boolean combination of
regular-response and regular-persistence languages.

Remark 12.8 [Normal form for ω-regular languages] Every ω-regular language
is of the form

⋂
0 ≤ i ≤ k. recur(Li) ∪ persist(L′

i)

for regular languages Li, L′
i.

Thus, the set of regular-safety languages is a subset of the the set of safety
languages, etc. The set of ω-regular languages is a subset of the set of reactivity
languages.

Example 12.7 [ω-regular languages] Let A = {a, b, c}. The ω-language (Aa)ω

is regular-safe; the ω-language A∗aAω is regular-guarantee; the ω-language
(A∗a)ω is regular-response; the ω-language A∗aω is regular-persistence; and the
ω-language consisting of ω-words with infinitely many b symbols or only finitely
many a symbols is ω-regular. The ω-language consisting of ω-words a such that
for all i ≥ 0, if i is a prime number, then ai = a, is safe but not regular-safe.

Closure properties of regular-safety, regular-guarantee, regular-response, regular-
persistence, and ω-regular languages coincide with the corresponding closure
properties of safety, guarantee, response, persistence, and reactivity languages,
respectively. In particular, regular-safety and regular-guarantee classes are du-
als of each other, and so are regular-response and regular-persistence classes.
These properties are summarized in the following proposition, and its proof
follows from the constructions of Section 10.1.3.

Proposition 12.6 [Closure properties of ω-regular languages] Regular-safety

languages, regular-guarantee languages, regular-response languages, and regular-

persistence languages are closed under union and intersection, but not under

complementation. The ω-regular languages are closed under all boolean opera-

tions.

Automata-theoretic Liveness Verification 18

12.3.2 Expressiveness of ω-automata

The ω-language L ⊆ Aω is said to be a Büchi language if L is accepted by some
Büchi automaton. First, let us note that Büchi languages are closed under all
boolean operations:

Proposition 12.7 [Closure of Büchi languages] The class of Büchi languages

is closed under union, intersection, and complementation.

Since Büchi acceptance is a special case of Streett acceptance, and by Propo-
sition 12.5 is powerful enough to admit translation from Streett constraints, it
follows that

Corollary 12.2 [Streett acceptance vs. Büchi acceptance] The ω-language

L ⊆ Aω is a a Büchi language iff L is accepted by some Streett automaton.

Exercise 12.7 {T3} [Acceptance by fair structures] Show that the ω-language
L ⊆ Aω is a Büchi language iff L is the fair language of some finite fair structure.

Recall that every ω-regular language is a boolean combination of regular-response
languages. Every regular-response language is accepted by a deterministic Büchi
automaton.

Proposition 12.8 [From regular-response to deterministic Büchi] For every

regular language L, there exists a Büchi automaton that accepts the response

language recur(L).

Proof. Let L be a regular language. There exists a deterministic and complete
automaton M = (K, σA) such that LM = L. Consider an ω-word a. There
exists precisely one initialized ω-trajectory s of K such that 〈〈s〉〉 = a. For every
i ≥ 0, the prefix a0...i belongs to L iff si ∈ σA. Hence, the ω-word a belongs to
recur(L) iff the ω-trajectory s is σA-fair. It follows that if we interpret M as a
Büchi automaton it accepts the ω-language recur(L).

Corollary 12.3 [Lower bound on Büchi expressiveness] For every ω-regular

language L, there exists a Büchi automaton that accepts L.

Proof. Follows from the definition of ω-regular languages, Proposition 12.7,
and Proposition 12.8.

Conversely, the language accepted by every ω-automaton is ω-regular:

Proposition 12.9 [Upper bound on Büchi expressiveness] Every Büchi lan-

guage is ω-regular.

Automata-theoretic Liveness Verification 19

Proof. To be added.

Exercise 12.8 {T4} [Expressiveness of Muller automata] Show that an ω-language
ω-regular iff it is accepted by a Muller automaton.

Exercise 12.9 {T4} [ω-regular expressions] We have been using ω-regular ex-
pressions (e.g. (A∗a)ω) to specify ω-languages. Let us now formally define the
syntax of ω-regular expressions. Given a finite alphabet A, the set of ω-regular
expressions is defined by the grammar

ϕ := a | ϕ · ϕ | ϕ + ϕ | ϕ∗ | ϕω

where a ∈ A. Show that an ω-language L is defined by an ω-regular expression
iff L is ω-regular.

Exercise 12.10 {T3} [Expressiveness of CoBüchi automata] Does the class of
languages accepted by CoBüchi automata coincide with ω-regular languages?

12.3.3 Deterministic ω-automata

We have established that the nondeterministic varieties of different types ω-
automata accept the same class of languages, namely, ω-regular languages. We
proceed to understand the expressive power of different types of deterministic
ω-automata.

The next proposition shows that every ω-regular language is accepted by some
deterministic Streett automaton, and both nondeterministic and deterministic
varieties of Streett automata have the same expressive power, namely, ω-regular
languages.

Proposition 12.10 [Expressiveness of deterministic Streett] For every ω-regular

language L, there exists a deterministic Streett automaton that accepts L.

Proof. Let L be an ω-regular language. Suppose L =
⋂

0 ≤ i ≤ k. (recur(Li)∪
persist(L′

i)) such that the languages Li, L′
i are regular. For 0 ≤ i ≤ k, let Mi =

(Ki, σi) be a complete deterministic automaton accepting the regular language
Li, and let M ′

i = (K ′
i, σ

′
i) be a complete deterministic automaton accepting the

regular language L′
i. Let K be the product of the 2k + 2 observation structures

Ki, K ′
i, for 0 ≤ i ≤ k. Since product construction preserves determinism, K is

deterministic.

Let a be an ω-word. For every 0 ≤ i ≤ k, the structure Ki has precisely one
ω-trajectory si with the corresponding trace a, and the word a ∈ recur(Li) iff
the ω-trajectory si is σi-fair. Similarly, for every 0 ≤ i ≤ k, the structure K ′

i

has precisely one ω-trajectory s′i with the corresponding trace a, and the word

Automata-theoretic Liveness Verification 20

Reactivity

Response
Safety

Det Streett

Obligation

Guarantee
Persistence

Nonregular

Det Buchi

ω-Regular
Buchi, Streett

Figure 12.7: Classes of ω-regular languages

a ∈ persist(L′
i) iff the ω-trajectory si is not σ′

i-fair. The product structure K has
precisely one ω-trajectory s with the trace a. For all 0 ≤ i ≤ k, the ω-trajectory
si of Ki is σi-fair iff the ω-trajectory s of K is (σi ⇑)-fair (recall the definition
of the lifting: σi ⇑ contains all product states whose component corresponding
to the structure Ki is in σi). Similarly, for all 0 ≤ i ≤ k, the ω-trajectory s′i of
K ′

i is σ′
i-fair iff the ω-trajectory s of K is (σ′

i ⇑)-fair.

It follows that the word a belongs to L iff the ω-trajectory s of the product is,
for all 0 ≤ i ≤ k, either (σi ⇑)-fair or not (σ′

i ⇑)-fair. Hence, the deterministic
Streett automaton (K, {(σ′

i ⇑, σi ⇑) | 0 ≤ i ≤ k}) accepts the ω-language L.

Exercise 12.11 {T3} [Expressiveness of deterministic Rabin automata] Show
that an ω-language is ω-regular iff it is accepted by some deterministic Rabin
automaton.

It turns out that Büchi accepting condition is not expressive to capture all ω-
regular languages, if we restrict to deterministic observation structures. The
class of languages accepted by deterministic Büchi automata coincides with the
regular-response languages.

Proposition 12.11 [Expressiveness of deterministic Büchi] The ω-language L ⊆
Aω is accepted by a deterministic Büchi automaton iff it is a regular-response

language.

Proof. By Proposition 12.10, we know that every regular-response language is
accepted by a deterministic Büchi automaton. For converse, consider a deter-
ministic Büchi automaton M = (K, σA). Let L be the regular language accepted
by the automaton with observation strcuture K and accepting region σA. Then,
the Büchi automaton M accepts the regular-response language recur(L).

It follows that deterministic Büchi automata are not closed under complemen-
tation. For instance, the response language “infinitely many a symbols” is ac-
cepted by a deterministic Büchi automaton, but its complement “only finitely

Automata-theoretic Liveness Verification 21

many a symbols” is a persistence language, and is not accepted by any de-
terministic Büchi automaton. Intuitively, to define the persistence language
consisting of ω-words with a suffix containing only b symbols using Büchi accep-
tance, the automaton must “guess” when the suffix containing only b symbols
has commenced. The relationship between different classes of ω-languages is
summarized in Figure 12.7

Exercise 12.12 {T3} [Union closure of deterministic Büchi automata] Since
response languages are closed under union, from Proposition 12.11, it follows
that deterministic Büchi automata are closed under union. Closure under union
can, alternatively, be established by a direct construction. Give an algorithm to
construct, given two deterministic Büchi automata M1 and M2, a deterministic
Büchi automaton that accepts the union LM1

∪ LM2
.

Appendix: Notation

For two sets A and B, if σ is a subset of A then σ ⇑ denotes the subset {(a, b) |
a ∈ σ} of the product-set A × B; if σ is a subset of B then σ ⇑ denotes the
subset {(a, b) | b ∈ σ} of the product-set A × B. The lifting operator ⇑ can
similarly be applied to binary relations over A to obtain binary relations over
the product-set. The lifting operation generalizes to products of multiples sets
also.

