
Contents

4 Graph Minimization 1

4.1 Graph Partitions . 1
4.1.1 Reachability-preserving Partitions 2
4.1.2 Graph Symmetries . 4

4.2 Partition Refinement . 7
4.2.1 The Structure of Stable Partitions 7
4.2.2 Partition-refinement Algorithms 10

4.3 Reachable Partition Refinement∗ 17

0

Computer-Aided Verification

c© Rajeev Alur and Thomas A. Henzinger November 11, 2004

Chapter 4

Graph Minimization

This chapter defines observational equivalence among states and the resulting
reductions in the state-space.

4.1 Graph Partitions

State-space abstraction decreases the size of a transition graph by collapsing
equivalent states. We begin by defining the quotient graphs induced by equiva-
lence relations on the states.

Let G = (Σ, σI ,→) be a transition graph. An equivalence ∼= ⊆ Σ2 on the
state space is called a G-partition. The quotient of G under ∼=, denoted G/∼=,
is the transition graph (Σ/∼=, σI/∼=,→∼=), where σ →∼= τ iff there are two
states s ∈ σ and t ∈ τ such that s → t.

In other words, the states of the quotient G/∼= are regions of the transition
graph G, namely, the ∼=-equivalence classes. A ∼=-equivalence class is initial
iff it contains an initial state. The ∼=-equivalence class τ is a successor of the
∼=-equivalence class σ iff a state in σ has a successor state in τ .

Let (P, p) be an invariant-verification problem. Instead of solving the reacha-
bility question (GP , [[¬p]]), we choose a GP -partition ∼=, construct the quotient
GP /∼=, and solve the reachability problem (GP /∼=, [[¬p]]/∼=). If the answer to
(GP /∼=, [[¬p]]/∼=) is No, then the answer to the original question (GP , [[¬p]]) is
also No, and p is an invariant of the reactive module P . This verification tech-
nique is called abstraction, because the transition graph GP is abstracted into
the quotient GP /∼= by omitting detail, such as the values of certain variables. If,
on the other hand, the answer to the reachability problem (GP /∼=, [[¬p]]) is Yes,
then p may or may not be an invariant of P . Abstraction, therefore, is a sound
but incomplete verification technique for checking invariants.

1

Graph Minimization 2

s0 s1

t0 t1

u0 u1

{s0, s1}

{t0, t1}

{u0, u1}

Figure 4.1: Quotient graph

Example 4.1 [Quotient graph] Consider the transition graph of Figure 4.1.
The partition ∼= contains 3 equivalence classes {s0, s1}, {t0, t1}, and {u0, u1}.
The corresponding quotient graph G/∼= has 3 states. To check whether the state
s0 is reachable from the state t0 in G, we can check whether the state {s0, s1} is
reachable from the state {t0, t1} in G/∼=, and we get the correct answer No. On
the other hand, to check whether the state u1 is reachable from the state t0 in
G, we can check whether the state {u0, u1} is reachable from the state {t0, t1}
in G/∼=, and we get the wrong answer Yes.

4.1.1 Reachability-preserving Partitions

We are interested in conditions under which quotients preserve the reachability
properties of a transition graph. These quotients, which are called stable, lead
to abstractions that are both sound and complete for checking invariants.

The G-partition ∼= is stable if for all states s, s′, and t, if s ∼= t and s → s′,
then there is a state t′ such that s′ ∼= t′ and t → t′. The quotient G/∼= is
stable if the partition ∼= is stable.

In other words, for two equivalence classes σ and τ of a stable partition ∼=,

some state in σ has a successor in τ

is equivalent to

every state in σ has a successor in τ .

Graph Minimization 3

Example 4.2 [Stable partition] For the transition graph of Figure 4.1, the
partition ∼= is stable. If we add a transition to G, from state t0 to state t1, the
partition ∼= will no longer be stable.

Suppose that ∼= is a stable G-partition, and let σT be a block of ∼=. The
reachability problem (G, σT) can be reduced to a reachability problem over the
quotient G/∼=, whose state space may be much smaller than the state space
of G. Indeed, Σ/∼= may be finite for infinite Σ.

Theorem 4.1 [Stable partitioning] Let G/∼= be a stable quotient of the tran-
sition graph G, and let σ be a block of ∼=. Then the two reachability problems
(G, σ) and (G/∼=, σ/∼=) have the same answer.

Proof. If the answer to (G, σT) is Yes, then the answer to (G/∼=, σT /∼=) is
also Yes. This direction does not require ∼= to be stable or σT to be a block of
∼=.

Suppose the answer to (G/∼=, σT /∼=) is Yes. Consider the witness trajectory
σ0 →∼= · · · →∼= σm in G/∼= with σo ∈ σI/∼= and σm ∈ σT /∼=. Since σT is a
block of ∼=, we know that σm ⊆ σT . Choose a state s0 in the intersection
σI ∩ σ0. Since ∼= is stable, we know that whenever τ →∼= υ, for all state s ∈ τ ,
there exists a state t ∈ υ such that s → t. Starting with s0 ∈ σ0, choose states
s1, . . . sm, one by one, such that, for every 1 ≤ i ≤ m, si ∈ σi, and si−1 → si.
Since sm is in the target region σT , the trajectory s0...m is a witness to the
reachability question (G, σT).

Exercise 4.1 {T2} [Inverse stability] The G-partition ∼= is initialized if the
initial region σI is a block of ∼=. The G-partition ∼= is backstable if for all
states s, s′, and t, if s ∼= t and s′ → s, then there is a state t′ such that
s′ ∼= t′ and t′ → t. Equivalently, ∼= is a backstable G-partition iff ∼= is a stable
G−1-partition.

Let G be a transition graph, let ∼= be an initialized backstable G-partition, and
let σT be a region of G. Prove that the two reachability problems (G, σT) and
(G/∼=, σT /∼=) have the same answer.

Projecting states of a module to a subset of variables gives a partition of the
underlying transition graph. Let P be a module, and let X be a subset of
its variables. For two states s and t of P , let s ∼=[X] t if X [s] = X [t]. The
equivalence ∼=[X] is a GP -partition.

Example 4.3 [Latched variables] Recall the definition of latched variables latchX P

of a module P . The GP -partition ∼=[latchXP] is a stable partition, and the re-
duced transition graph GL

P is the resulting quotient graph.

Graph Minimization 4

Thus, projection to latched variables results in a stable partition. An orthogonal
method to obtain a stable partition is to find a set of variables that is closed
under dependencies.

Stable variable sets

Let P be a module. A subset X ⊆ XP of the module variables is stable if
for every variable x ∈ X , if the variable x is controlled by the atom U of P
then both readXU ⊆ X and awaitXU ⊆ X .

Proposition 4.1 [Stable projections] Let P be a module, and let X be a stable
subset of its variables. Then, the GP -partition ∼=[X] is a stable partition.

Exercise 4.2 {T2} [Elimination of redundant variables] Consider the invariant
verification problem (P, p). Let X be a stable set of the module variables. Show
that if the observation predicate p refers only to the variables in X ∩ obsXP ,
then [[¬p]] is a block of the GP -partition ∼=[X]. Then, the invariant verification
problem (P, p) reduces to the reachability problem (GP /∼=[X]

, [[¬p]]).

Give an algorithm to compute the minimal set Xp of variables that contains all
the variables in p and is stable. Notice that the set Xp contains all the variables
whose initialization and update influences the initialization and update of the
variables in p, and thus, the remaining variables XP \Xp are redundant for the
verification of p.

4.1.2 Graph Symmetries

Stable quotients often arise from exploiting the symmetries of a transition graph.
For instance, in the module Pete the individual processes are symmetric, result-
ing in the symmetry in the state-space of GPete . To formalize the reduction
afforeded by symmetries, we beign by defining graph automorphisms. A graph
automorphism is a one-to-one onto mapping from vertices to vertices that pre-
serves the initial region as well as the transitions.

Graph Automorphism

Consider two transition graphs G1 = (Σ1, σ
I
1 ,→1) and G2 = (Σ2, σ

I
2 ,→2).

A bijection f from Σ1 to Σ2 is an isomorphism from G1 to G2 if (1) f(σI
1) =

σI
2 and (2) for all states s, t ∈ Σ1, s →1 t iff f(s) →2 f(t). An isomorphism

from G to G is called a G-automorphism.

Remark 4.1 [Graph Automorphisms] For every transition graph G, the iden-
tity function is a G-automorphism. If f is a G-automorphism, then so is its
inverse f−1. The (functional) composition of two G-automorphisms is a G-
automorphism. The set of all binary functions over the state-space of G forms a

Graph Minimization 5

group under functional composition. The set of G-automorphisms forms a sub-
group. Furthermore, for a set F of G-automorphisms, the subgroup generated
by F contains only G-automorphisms.

The group of G-automorphisms under functional composition is called the sym-
metry group of G. This symmetry group, or any of its subgroups, can be used to
define a stable partition. Given a set F of generators that are G-automorphisms,
we obtain the corresponding symmetric partition by considering all the auto-
morphisms in the subgroup generated by F .

Symmetric Partition

Let G be a transition graph, and let F be a set of G-automorphisms. The
F -symmetric partition ∼=F is defined by: for all states s and t of G, let
s ∼=F t if there is an automorphism f ∈ closure(F) such that t = f(s).

Stability of the symmetric partition follows immediately from the definitions.

Theorem 4.2 [Symmetric partitioning] Let G be a transition graph, and let F
be a set of G-automorphisms. The induced G-partition ∼=F is stable.

Let G be a transition graph, let σ be a region of G, and let F be a set of G-
automorphisms. If σ is a block of the induced G-partition ∼=F , then the quotient
G/∼=F can be used to solve the reachability problem (G, σ). Notice that σ is a
block of ∼=F iff for all G-automorphisms f ∈ F , f(σ) = σ.

Example 4.4 [Symmetry of mutual exclusion] Recall Peterson’s mutual-exclu-
sion protocol from Chapter 1. Consider the following bijection f on the state
space ΣPete of the underlying transition graph GPete : let t = f(s) iff

x1[t] = x2[s] and x2[t] 6= x1[s], and
pc1[t] = pc2[s] and pc2[t] = pc1[s].

The function f swaps the values of pc1 and pc2, swaps the values of x1 and x2,
and toggles x2. Note that the thruth of the condition x1 = x2 is toggled by the
function f .

Verify that the function f is a GPete -automorphism. The composition f ◦ f
simply toggles both x1 and x2: t = f ◦ f(s) iff

x1[t] 6= x1[s] and x2[t] 6= x2[s], and
pc1[t] = pc1[s] and pc2[t] = pc2[s].

The composition f ◦ f ◦ f is the inverse of f : t = f ◦ f ◦ f(s) iff

x1[t] 6= x2[s] and x2[t] = x1[s], and
pc1[t] = pc2[s] and pc2[t] = pc1[s].

Graph Minimization 6

It follows that f4 equals the identity map. Consequently, the subgroup closure(f)
generated by the automorphism f equals {f, f ◦f, id, f−1}, where id the identity
function. Consider the four initial states—s1, s2, s3, and s4—of Pete

s1(pc1) = outC , s1(x1) = true, s1(pc2) = outC , s1(x2) = true;
s2(pc1) = outC , s2(x1) = true, s2(pc2) = outC , s2(x2) = false ;
s3(pc1) = outC , s3(x1) = false , s3(pc2) = outC , s3(x2) = true;
s4(pc1) = outC , s4(x1) = false , s4(pc2) = outC , s4(x2) = false .

Verify that s2 = f(s1), s3 = f(s2), s4 = f(s3), and s1 = f(s4). In the partition
∼=f , two states are equivalent if one can be obtained from the other by applying
one of the automorphisms in closure(f). In particular, all the four initial states
are equivalent. Verify that while GPete contains 36 states, the partition ∼=f

contains 9 classes; while the reachable subgraph of GPete contains 20 states, the
number of reachable classes of ∼=F is 5.

The region [[¬(pc1 = inC ∧ pc2 = inC)]] is invariant under the function f ,
and hence, is a block of the stable partition ∼=f . It follows that the quotient
GPete/∼=f can be used to check that the protocol Pete enforces mutual exclusion.

In practice, the communication topology among different components yields
graph automorphisms. Two typical examples are:

• Star Topology: The system consists of a module P (server) communicat-
ing with modules P1, . . . Pn (clients). The client modules P1, . . . Pn are
renamed copies of each other, and thus, there is a one-to-one correspon-
dence between the controlled variables of two client modules. Two client
modules do not have any common variables, and thus, each client mod-
ule communicates only with the server. In this situation, swapping the
values of the controlled variables of two client modules results in an auto-
morphism. In particular, the set F of generators contains for every pair
1 ≤ i, j ≤ n, the automorphism fij that swaps the values of the controlled
variables of Pi with the values of the corresponding controlled variables of
Pj .

• Ring Topology: The system consists of modules P1, . . . Pn connected in
a ring, that is, every module Pi communicates only with its neighboring
modules Pi−1 and Pi+1 (where increments and decrements are modulo
n). All the modules are renamed copies of each other. In this situation,
every rotation of the indices yields an automorphism. That is, for every
i, the function fi is an automorphism, where t = fi[s] if the values of the
controlled variables of the module Pj in state t equal the values of the
corresponding controlled variables of the module Pj+i in state s.

Graph Minimization 7

Exercise 4.3 {T2} [Symmetry in Railroad controller] Consider the module Rail-
roadSystem from Chapter 2. Find a suitable set F of automorphisms. What is
the equivalence ∼=F induced on the state-space?

To apply symmetric reduction to the invariant verification problem (P, p), we
first find a suitable set of GP -automorphisms. The next step is to find a map-
ping rep that maps every state s to a unique representative of the equivalence
class of ∼=F that contains s: if s ∼=F t, then rep(s) = rep(t). If we have such
a function rep, then the depth-first search algorithm is modified so that only
the representative states are explored. This is achieved by replacing the initial
region σI by the set rep(σI) of representative initial states, and replacing the
successor function post by the function rep ◦post that considers only representa-
tive states. Consequently, the complexity of the search is proportional the size
of the quotient graph with respect to ∼=F .

Exercise 4.4 {T3} [Representative states in mutual exclusion] Consider the
automorphism f , and the induced equivalence ∼=f , on the state-space of the
module Pete considered in Example 4.4. Suggest a suitable set of representative
states and the function rep that maps each state to its representative.

4.2 Partition Refinement

Suppose we wish to solve multiple verification problems involving a transition
graph G. Then, it is prudent to find a stable G-partition ∼= such that there are
as few ∼=-equivalence classes as possible. Then the quotient G/∼= can be used to
solve the verification problems concerning G.

4.2.1 The Structure of Stable Partitions

If ∼=1 and ∼=2 are stable partitions of a transition graph, then so is their join:

Lemma 4.1 [Union-closure of stable partitions] Let G be a transition graph. If
E is a set of stable G-partitions, then the join

⋃

∗

E is a stable G-partition.

Proof. Let G be a transition graph, let E is a set of stable G-partitions, and
let ∼= be the join

⋃

∗

E of all partitions in E. Suppose s ∼= t and s → s′. Since
∼= is the transitive closure of the union of the equivalence relations in E, there
are states s0, . . . sn and partitions ∼=1,∼=n in E such that s0 = s, sn = t, and
si−1

∼=i si for 1 ≤ i ≤ n. Let s′0 = s′. We have s0 → s′0. Since each partition ∼=i

is stable, by induction on i, there exist states s′1, . . . s
′

n such that for 1 ≤ i ≤ n,
si → s′i and s′i−1

∼=i s′i. Choose t′ = s′n. We have t → t′ and s′ ∼= t′.

Corollary 4.1 [CPO of stable partitions] For every transition graph G, the
refinement relation � is a complete lattice on the stable G-partitions.

Graph Minimization 8

Exercise 4.5 {T2} [Complete lattice of stable partitions] Consider the com-
plete lattice � on the stable G-partitions of the transition graph G. Let E be
a set of stable G-partitions. The least upper �-bound for E is the join

⋃

∗

E.
What is the greatest lower �-bound for E?

Let ∼= be a partition of the transition graph G. Consider the set E of all stable
partitions that refine ∼=. The join

⋃

∗

E, which is guaranteed to exist, is a stable
partition. Furthermore, since every partition in E refines ∼=, so does

⋃

∗

E.
Consequently, the join

⋃

∗ E is the coarsest partition that is both stable and is
finer than ∼=.

Let G be a transition graph, and let ∼= be a G-partition. The coarsest stable
refinement of ∼=, denoted minG(∼=), is the join of all stable G-partitions that
refine ∼=. The quotient G/min(∼=) is called ∼=-minimal.

It follows that min(∼=) is a stable G-partition that refines ∼=, and that all stable
G-partitions that refine ∼= also refine min(∼=).

Remark 4.2 [Refinement of identity and universal partitions] If ∼= is the iden-
tity partition (i.e. all equivalence classes of ∼= are singletons), then min(∼=)
equals ∼=. If G is a serial transition graph, and ∼= is the universal partition (i.e.
contains a single equivalence class containing all states), then min(∼=) equals ∼=.

The partition-refinement problem

An instance (G,∼=I) of the partition-refinement problem consists of (1) a
transition graph G and (2) [the initial partition] a G-partition ∼=I . The
answer to the partition-refinement problem (G,∼=I) is the coarsest stable
refinement min(∼=I) of the initial partition ∼=I .

Example 4.5 [Coarsest stable refinement] Consider the transition graph of Fig-
ure 4.1. Suppose the initial partition ∼=I contains two regions; {s0, s1, t0, t1} and
{u0, u1}. The initial partition itself is not stable. Its coarsest stable refinement
contains three regions {s0, s1}, {t0, t1}, and {u0, u1}.

Minimal reachability-preserving quotients

Let G be a transition graph with the state space Σ. For a region σ of G, let
∼=σ denote the binary G-partition {σ, Σ\σ}. The partition ∼=σ is the coarsest
partition that has σ as a block. The ∼=σ-minimal quotient G/min(∼=σ) of the

transition graph G can be used to solve the reachability problem (G, σ), because
min(∼=σ) is stable and σ is a block of min(∼=σ). For a set R of regions, let ∼=R

denote the G-partition (∩σ ∈ R. ∼=σ). The ∼=R-minimal quotient G/min(∼=R)

Graph Minimization 9

can then be used to solve all reachability problems of the form (G, σ) for σ ∈ R.
For example, let P be a module. Copnsider the equivalence ∼= on the state-space
of P induced by the observations: s ∼= t iff obsXP [s] = obsXP [t]. Then, two
∼=-equivalent states satisfy the same set of observation predicates. The quotient
GP /min(∼=) can then be used to solve all invariant-verification problems for the
module P .

Exercise 4.6 {T3} [Reachable portion of minimal quotients] Let G be a transi-
tion graph, and let σ be a region of G. To solve the reachability problem (G, σ),
it suffices to consider the reachable region σR of G. We may first find a minimal
quotient of G and then construct the reachable subquotient, or we may first
construct the reachable subgraph of G and then find a minimal quotient. Both
methods lead to isomorphic results. Let G1 be the reachable subgraph of the
∼=σ-minimal quotient G/min(∼=σ) of G. For ∼== {σR ∩ σ, σR\σ}, let G2 be the
∼=-minimal quotient GR/min(∼=) of the reachable subgraph GR of G. Prove that
the two transition graphs G1 and G2 are isomorphic.

Exercise 4.7 {T4} [Inverse minimal quotients] Let G = (Σ, σI ,→) be a tran-
sition graph, and let ∼= be a G-partition. The coarsest backstable refinement
of ∼=, denoted min−1(∼=), is the join of all backstable G-partitions that refine ∼=.
The quotient G/min−1

(∼=σI)
of the transition graph G can be used to solve the

reachability problem (G, σ), for any region σ of G. Prove that the unreachable

region Σ\σR is a min−1(∼=σI

)-equivalence class.

Let σ be a region of G. To solve the reachability problem (G, σ), we may
compute (the reachable portion of) a stable refinement of ∼=σ , or a backstable

refinement of ∼=σI

. Depending on the given reachability problem, either method
may be superior to the other method. Consider two state spaces: (A) the
quotient σR/min(∼=σ) of the reachable region σR with respect the coarsest stable

refinement min(∼=σ); (B) the coarsest backstable refinement min−1(∼=σI

). Give
an example of a reachability problem for which state space (A) is finite and
state space (B) is infinite, and an example for which state space (A) is infinite
and state space (B) is finite.

Exercise 4.8 {T3} [Symbolic reachability versus partition refinement] Let G
be a transition graph, and let σ be a region of G. Prove that for all nat-
ural numbers i, the region pre i(σ) is a block of the coarsest stable refine-
ment min(∼=σ), and the region post i(σI) is a block of the coarsest backstable

refinement min−1(∼=σI

). Conclude that if the coarsest backstable refinement

min−1(∼=σI

) is finite, then the transition graph G is finitely reaching.

Graph Minimization 10

4.2.2 Partition-refinement Algorithms

We first develop a schematic algorithm for solving the partition-refinement prob-
lem, and prove it correct. For a running-time analysis, we then present several
concrete instantiations of the schematic partition-refinement algorithm.

A region characterization of stability

Let G be a transition graph, and let σ and τ be two regions of G. The region σ
is stable with respect to the region τ if either σ ⊆ pre(τ) or σ ∩ pre(τ) = ∅. Let
∼= be a G-partition. The partition ∼= is stable with respect to the region τ if all
∼=-equivalence classes are stable with respect to τ . This region-based definition
gives an alternative characterization of stability.

Lemma 4.2 [Stability with respect to regions] Let G be a transition graph,
and let ∼= be a G-partition. Then ∼= is stable iff ∼= is stable with respect to all
∼=-equivalence classes.

Stabilization of a partition with respect to a region

Partition-refinement algorithms stabilize the given initial partition by repeatedly
splitting equivalence classes. Consider a partition ∼=. If ∼= is not stable, then,
by Lemma 4.2, there are two equivalence classes σ and τ of ∼= such that σ is not
stable with respect to τ . In such a case, we can split σ into two regions, one that
contains states which have successors in τ and the other one that contains states
with no successors in τ . That is, we split σ at the boundary of the predecessor
region of τ .

Let τ be a region of the transition graph G. For a region σ of G, let

Split(σ, τ) =

{

{σ} if σ ⊆ τ or σ ∩ τ = ∅,
{σ ∩ τ, σ\τ} else,

be the result of splitting σ at the boundary of τ . For a G-partition ∼=, let

Split(∼=, τ) = (∪σ ∈∼= .Split(σ, τ))

be the result of splitting ∼= at the boundary of τ . The result Split(∼=, τ) is a G-
partition that refines ∼= and contains at most twice as many equivalence classes
as ∼=. To stabilize ∼= with respect to τ , we split ∼= at the boundary of pre(τ):

Stabilize(∼=, τ) = Split(∼=, pre(τ)).

The stablization of a region σ with respect to τ is depicted pictorially in Fig-
ure 4.2. The Stabilize operation can be implemented either symbolically or
enumeratively.

Symbolic stabilization. Suppose that the region τ is given by a symbolic
region representation {τ}s, and the partition ∼= is given by a list 〈{σ}s | σ ∈∼=〉

Graph Minimization 11

σ τ

σ ∩ pre(τ)

σ\pre(τ)

Figure 4.2: Stabilizing one region with respect to another

of symbolic region representations. The operation Stabilize(∼=, τ) can then be
performed using boolean operations, emptiness checking, and the pre operation
on symbolic region representations.

Enumerative stabilization. We are given an abstract data type partition

that maintains a collection of nonempty, disjoint subsets of the state-space. The
data type partition is like set of region, but supports the following additional
operations:

Find : For a state s and a partition ∼=, the operation Find(s,∼=) returns the
(name of) the region that contains s, if such a region exists; otherwise
Find(s,∼=) returns nil .

Create : For a state s and a partition ∼=, the operation Create(s,∼=) removes s
from any existing region in ∼=, creates a singleton set containing s, and re-
turns the newly created set. Note that Create(s,∼=) destructively updates
the partition ∼=.

Move : For a state s, a partition ∼=, and a set σ in ∼=, the operation Move(s, σ,∼=)
removes s from any existing set in ∼= and adds s to the set σ; if the result
of removing s from an existing set results in an empty set, that set is
destroyed.

Exercise 4.9 {P2} [Abstract data type partition] Implement the abstract data
type partition so that each of the three operations Find , Create , and Move
take constant time.

Let G be a finite transition graph. Suppose that the region τ is given by
a list {τ}e of states, and the partition ∼= is given using the abstract data
type partition. Furthermore, with each state s we are given a list of all pre-
decessor states in pre(s), and with each set σ in partition we are given the
name new(σ) of another set in partition. When stabilizing the region σ with

Graph Minimization 12

respect to τ , the states in σ ∩ pre(τ) are moved to the set new(σ). Initially,
all new pointers are nil , and they are reset after stabilization. The operation
Stabilize(∼=, τ) can then be performed as follows:

foreach s ∈ τ do foreach t ∈ pre(s) do Update(t,∼=) od od;
foreach s ∈ τ do foreach t ∈ pre(s) do Reset(t,∼=) od od,

where both

Update(t,∼=):
if new(Find (t,∼=)) = nil

then new(Find (t,∼=)) := Create(t,∼=)
else Move(t,new(Find(t,∼=)),∼=)
fi

and

Reset(t,∼=):
new(Find(t,∼=)) := nil

take constant time. Let nτ be the number of states in the region τ , and let
mτ be the number of transitions whose target lies in τ . The time required
by the operation Stabilize(∼=, τ) is stabcost(τ) = O(mτ + nτ). We charge the
stabilization cost stabcost(τ) to the individual states in τ . If ms is the number
of transitions with target s (i.e. ms = |pre(s)|), then we charge stabcost(s) =
O(ms + 1) to each state s ∈ τ . Then stabcost(τ) = (+s ∈ τ. stabcost(s)).

Iterative stabilization of a partition

The key properties of the operation of stabilizing a partition with respect to a
region are summarized in the next lemma.

Lemma 4.3 [Stabilization for partition refinement] Let G be a transition graph,
let ∼= be a G-partition, and let τ be a region of G. (1) If τ is a block of ∼=, then
min(∼=) � Stabilize(∼=, τ). (2) Every G-partition that refines Stabilize(∼=, τ) is
stable with respect to τ .

Exercise 4.10 {T2} [Stabilization for partition refinement] Prove Lemma 4.3.

Lemma 4.3 suggests a partition-refinement algorithm that, starting from the
given initial partition, repeatedly stabilizes the partition with respect to one
of its blocks. Part (1) ensures that stabilization with respect to a block never
causes unnecessary splitting. Part (2) ensures that every block needs to be
considered for stabilization at most once. The resulting scheme is shown in
Figure 4.3.

In Algorithm 4.1, at the beginning of each execution of the while-loop, we know
that

Graph Minimization 13

Algorithm 4.1 [Schematic Partition Refinement]

Input: a transition graph G = (Σ, σI ,→) and an initial G-partition ∼=I .
Output: the coarsest stable refinement min(∼=I).
Local: a G-partition ∼= and a region set done .

∼=:=∼=I ; done := {Σ};
while ∼= 6 ⊆ done do

{assert min(∼=I) refines ∼=, and ∼= is stable w.r.t. all regions in done}
Choose a block τ of ∼= such that τ 6∈ done ;
∼=:= Stabilize(∼=, τ);
done := Insert(τ, done)
od;

return ∼=.

Figure 4.3: Partition refinement

1. the coarsest stable refinement min(∼=I) is a refinement of the current par-
tition ∼=,

2. every region in the set done is a block of the current partition ∼=, and

3. the current partition ∼= is stable with respect to every region in done .

Algorithm 4.1 terminates iff min(∼=I) has finitely many equivalence classes. Sup-
pose that min(∼=I) has n equivalence classes and, therefore, 2n blocks. With
every iteration of the while-loop, a block of min(∼=I) is added to the set done .
It follows that the while-loop is executed at most 2n times.

Theorem 4.3 [Schematic partition refinement] Let G be a transition graph,
and let ∼=I be a G-partition. If the coarsest stable refinement min(∼=I) is finite,
then Algorithm 4.1 solves the partition-refinement problem (G,∼=I).

A quadratic partition-refinement algorithm

If we carefully choose the region τ in each iteration of Algorithm 4.1, we ob-
tain polynomial-time implementations. A quadratic running time is achieved if,
during consecutive iterations, we systematically stabilize the initial partition ∼=I

first with respect to all ∼=I -equivalence classes, then with respect to all equiva-
lence classes of the resulting partition, etc. The resulting algorithm is shown in
Figure 4.4.

Observe that during the execution of the for-loop, every equivalence-class of
∼=prev is a block of the current partition ∼=, and at the beginning of the while-
loop the current partition ∼= is stable with respect to every region in ∼=prev . Thus,

Graph Minimization 14

Algorithm 4.2 [Quadratic Partition Refinement]

Input: a transition graph G = (Σ, σI ,→) and an initial G-partition ∼=I .
Output: the coarsest stable refinement min(∼=I).
Local: two G-partitions ∼= and ∼=prev .

∼=:=∼=I ; ∼=prev := {Σ};
while ∼= 6=∼=prev do

{assert min(∼=I) refines ∼=, and ∼= is stable w.r.t. all regions in ∼=prev}
∼=prev :=∼=;
for each τ ∈∼=prev do ∼= := Stabilize(∼=, τ) od

od;
return ∼=.

Figure 4.4: Quadratic algorithm for partition refinement

Algorithm 4.2 is an instance of Algorithm 4.1, and its correctness follows im-
mediately. With every iteration of the while-loop, the number of ∼=-equivalence
classes increases. Hence, if min(∼=I) has n equivalence classes, the while-loop is
executed at most n times. The for-loop can be implemented either symbolically
or enumeratively. Consider an enumerative implementation of Algorithm 4.2 for
an input graph G with n states and m ≥ n transitions. Then the coarsest stable
refinement min(∼=I) has at most n equivalence classes, and the time required by
the for-loop is

(+τ ∈∼=prev . stabcost(τ)) = (+s ∈ Σ. stabcost(s))
= (+s ∈ Σ. O(ms + 1))
= O(m).

Theorem 4.4 [Quadratic partition refinement] Let G be a finite transition
graph with n states and m transitions. The running time of Algorithm 4.2
on input G is O(m·n).

Exercise 4.11 {P3} [Quadratic partition refinement] Write a program that im-
plements Algorithm 4.2 symbolically, and a program that implements Algo-
rithm 4.2 enumeratively. For your symbolic program, assume that the input
graph G is given by a symbolic graph representation {G}s, and the input par-
tition ∼=I is given by a list 〈{σ}s | σ ∈∼=I〉 of symbolic region representations.
For your enumerative program, assume that the input graph G is given by an
enumerative graph representation {G}e, and the input partition ∼=I is given by
a list 〈{σ}e | σ ∈∼=I〉 of enumerative region representations. The asymptotic
running time of your enumerative program should be quadratic in the size of
the input.

Graph Minimization 15

Algorithm 4.3 [Paige-Tarjan Partition Refinement]

Input: a transition graph G = (Σ, σI ,→), and an initial G-partition ∼=I .
Output: the coarsest stable refinement min(∼=I).
Local: two G-partitions ∼= and ∼=done .

∼=:=∼=I ; ∼=done := {Σ};
while ∼=⊂∼=done do

{assert min(∼=I) �∼=, and ∼= is stable w.r.t. all regions in ∼=done}
Choose σ ∈ (∼=done \ ∼=);
Choose τ ∈∼= such that τ ⊆ σ and |τ | ≤ |σ|/2;
∼=:= Stabilize(Stabilize(∼=, τ), σ\τ);
∼=done := Insert(σ\τ, Insert(τ,Delete(σ,∼=done)))
od;

return ∼=.

Figure 4.5: Paige-Tarjan algorithm for partition refinement

The Paige-Tarjan partition-refinement algorithm

To improve the time complexity of partition refinement, we need an improved
strategy to choose the splitting block. The number of stabilization operations
required can equal the number of equivalence-classes in the coarsest stable re-
finement, which can, in turn, be equal to the number of states in the transition
graph, in the worst case.

Exercise 4.12 {T3} [Worst-case for quadratic partition refinement] Give an
instance (G,∼=I) of the partition refinement problem such that the execution of
Algorithm 4.1 on this instance, requires n iterations of the while-loop, irrespec-
tive of the choices of the splitting blocks τ .

If, at each iteration of Algorithm 4.1, we carefully choose a “small” block τ of
∼= for the operation Stabilize(∼=, τ), we arrive at a subquadratic running time.
A suitable criterion for “small” is that τ is a ∼=-equivalence class that contains
at most half the states of any ∼=-block σ if ∼= is known to be stable with respect
to σ. This criterion is enforced by maintaining a second partition, ∼=done , such
that ∼= refines ∼=done and is stable with respect to all ∼=done -equivalence classes.
The algorithm is shown in Figure 4.5. Observe that Algorithm 4.3 is an instance
of Algorithm 4.1.

Consider an enumerative implementation of Algorithm 4.3 for an input graph
G with n states and m ≥ n transitions. Since the number of ∼=done-equivalence
classes increases with every iteration, the while-loop is executed at most n times.
Let σi and τi denote the equivalence classes of ∼=done and ∼=, respectively, that

Graph Minimization 16

are chosen in the i-th iteration of the while-loop. An appropriate choice of τi

can be performed by maintaining for each ∼=-equivalence class υ a counter that
indicates the number of states in υ. Suppose that a state s ∈ Σ belongs to both
τi and τj , for j > i. Since σj ⊆ τi and |τj | ≤ |σj |/2, also |τj | ≤ |τi|/2. It follows
that there are at most log n + 1 iterations i such that s ∈ τi.

The i-th iteration of the while-loop consists of two stabilizing operations, one
with respect to τi and one with respect to σi\τi. Since each state belongs only to
O(log n) many regions τi, the cumulative cost of the stabilization operations with
respect to all regions τi is (+s ∈ Σ. O(log n)·stabcost(s)) = O(m·log n). A state,
however, may belong to O(n) many regions of the form σi\τi. The following
lemma states that to stabilize ∼= with respect to σi\τi, instead of splitting ∼=
with respect to pre(σi\τi), we can split it with respect to pre(τi)\pre(σi\τi),
thereby, avoiding the computation of pre(σi\τi). This observation allows us to
implement the operation Stabilize(∼=, σi\τi) in time stabcost(τi), that is, at the
same cost as the operation Stabilize(∼=, τi).

Lemma 4.4 [Efficient stabilization for Paige-Tarjan] Let G be a transition graph,
let ∼= be a G-partition, and let σ and τ be two blocks of ∼=. If ∼= is stable with
respect to σ and τ , then

Stabilize(∼=, σ\τ) = Split(∼=, pre(τ)\pre(σ\τ)).

Exercise 4.13 {T3} [Efficient stabilization for Paige-Tarjan] Prove Lemma 4.4.

For every state s ∈ Σ and every ∼=done-equivalence class σ, we maintain a counter
tcount(s, σ) that indicates the number of transitions from s to a state in σ; that
is, tcount(s, σ) = |σ ∩ post(s)|. The operation Stabilize(∼=, σ\τ) can then be
performed in time stabcost(τ) = O(mτ + nτ):

foreach s ∈ τ do

foreach t ∈ pre(s) do tcount(t, τ) := 0 od

od;
foreach s ∈ τ do

foreach t ∈ pre(s) do tcount(t, τ) := tcount(t, τ) + 1 od

od;
foreach s ∈ τ do

foreach t ∈ pre(s) do

tcount(t, σ\τ) := tcount(t, σ) − tcount(t, τ);
if tcount(t, σ\τ) = 0 then Update(t,∼=) fi

od

od;
foreach s ∈ τ do foreach t ∈ pre(s) do Reset(t,∼=) od od.

Graph Minimization 17

If we charge the cost of both parts of the operation Stabilize(Stabilize(∼=, τ), σ\τ)
to the states in τ , it follows that the time required by Algorithm 4.3 is

(+s ∈ Σ. O(log n)·2·stabcost(s)) = O(m·log n).

Theorem 4.5 [Paige-Tarjan partition refinement] Let G be a finite transition
graph with n states and m transitions. The running time of Algorithm 4.3 on
input G is O(m·log n).

Exercise 4.14 {P2} [Mutual exclusion] Recall Peterson’s mutual-exclusion pro-
tocol from Chapter 1. In the initial partition ∼=I , two states are equivalent iff
they agree on all the observation predicates: s ∼=I t iff pc1[s] = pc1[t] and
pc2[s] = pc2[t]. Construct the ∼=I -minimal quotient of GPete using first Algo-
rithm 4.2 and then Algorithm 4.3. In both cases, show the intermediate results
after each iteration of the while-loop.

4.3 Reachable Partition Refinement∗

Consider a transition graph G = (Σ, σI ,→) and an initial partition ∼=I . The ∼=I -
minimal quotient is the graph G/min(∼=I) with state space Σ/min(∼=I) and initial

states σI/min(∼=I). For verification, we need to compute only the reachable

states of the ∼=I -minimal quotient. This suggests reformulating the partition
refinement problem to account for reachability.

Minimal reachable quotient

Let G be a transition graph and let ∼= be a G-partition. The reachable
stable partition of ∼=, denoted minR(∼=), is the reachable region of the ∼=-
minimal quotient G/min(∼=). The reachable subgraph of G/min(∼=) is called
the ∼=-minimal-reachable quotient.

Remark 4.3 [Minimal reachable quotient] Let G be a transition graph with
states Σ and reachable region σR. Let ∼= be a G-partition. The region σR

need not be a block of min(∼=). The reachable stable partition minR(∼=) is a
partitioning of some region σ of G such that σR ⊆ σ ⊆ Σ. Thus, minR(∼=) is
not necessarily a G-partition, nor a refinement of ∼=. A region τ in minR(∼=) is
contained in some ∼=-equivalence class, and is stable with respect to every region
in minR(∼=).

To solve a reachability problem for the transition graphs, it suffices to con-
struct the minimal-reachable quotient with respect to a suitably chosen initial
partition.

Proposition 4.2 [Reachability] Let G be a transition graph, ∼= be a G-partition,
and σ be a block of ∼=. Then, the answer to the reachability problem (G, σ) is Yes

iff σ ∩ τ is nonempty for some τ ∈ minR(∼=).

Graph Minimization 18

Algorithm 4.4 [Minimization with reachability]

Input: a transition graph G = (Σ, σI ,→) and a G-partition ∼=I .
Output: the answer to the reachable-partition-refinement problem

(G,∼=I).

∼=:=∼=I ; σR := ∅
repeat

{assert min(∼=I) is a refinement of ∼= }
∼=R:= {σ ∈∼= | σ ∩ σR 6= ∅}
{assert σR ⊆ post∗(σI), and for σ ∈∼=R, |σ ∩ σR| = 1 }
U := {σ ∈∼= \ ∼=R | σ ∩ (σI ∪ post(σR)) 6= ∅}
V := {(τ, υ) ∈∼=R × ∼= | τ is unstable with respect to υ}
Search: or Split:
Choose σ ∈ U Choose (τ, υ) ∈ V
Choose s ∈ σ ∩ (σI ∪ post(σR)) ∼= := Delete(τ,∼=)
σR := Insert(s, σR) ∼= :=∼= ∪Split(τ, pre(υ))

until U = ∅ and V = ∅
return ∼=R.

Figure 4.6: Simultaneous minimization and reachability

Reachable partition refinement

An instance (G,∼=I) of the reachable-partition-refinement problem consists
of (1) a transition graph G and (2) [the initial partition] a G-partition ∼=I .
The answer to the reachable-partition-refinement problem (G,∼=I) is the
reachable stable partition minR(∼=).

One possible solution to the reachable-partition-refinement problem is to first
compute the ∼=I -minimal quotient and then analyze reachability. However, there
are instances of the problem for which min(∼=I) contains large, or even infinite,
number of regions, but only a small number of them are reachable. Thus, the
problem demands a solution that performs both the stabilization and reacha-
bility analysis simultaneously. An alternative strategy is shown in Figure 4.6.

As in the previous partition refinement algorithms, Algorithm 4.4 maintains a
current partition ∼=. The set σR contains states reachable from σI (at most
one state per region of ∼=). The set ∼=R contains those regions of ∼= that are
already known to be reachable. The algorithm computes the set U of regions
that can be added to ∼=R and the set V of unstable pairs of regions. A region
σ belongs to U if it contains an initial state or a successor of a state already
known to be reachable. A pair (τ, υ) belongs to the set V if τ is known to be

Graph Minimization 19

x := x + 1

x := x + 2

x := x + 2

x := x + 4

x := x + 4

x := x + 8

x := x + 8

x := x + 16

x := x + 160

1

2

3

4

5

6

7

8

9

10

Figure 4.7: Example for computing minimal-reachable quotient

reachable, and is unstable with respect to υ. The algorithm either updates the
reachability information for some region in U , or stabilizes some pair (τ, υ) in V
by splitting τ . Thus searching is interleaved with stabilization in an arbitrary
fashion. Stabilization involves splitting a reachable region τ with respect to
pre(υ) for some ∼=-equivalence class υ. Observe that a region is split only if it is
known to be reachable. The algorithm terminates when neither search nor split
is enabled. As in partition refinement, the coarsest stable partition min(∼=I) is a
refinement of the current partition ∼=. Upon termination, ∼=R is a subset of the
coarsest stable partition min(∼=I), and contains its reachable states. However,
∼= may contain unstable unreachable regions, and thus, need not equal min(∼=I).

Theorem 4.6 [Minimization with reachability] On an instance (G,∼=I) of reachable-
partition refinement problem, if Algorithm 4.4 terminates, it outputs the reach-
able stable partition minR(∼=I).

The size of σR, and hence, the number of regions in ∼=R, is nondecreasing, and
is bounded by the number of regions in the output minR(∼=I). Every iteration
either adds one more state to σR, or one more region to the partition ∼=. It
follows that if the coarsest stable refinement min(∼=I) has finitely many regions,
then Algorithm 4.4 is guaranteed to terminate. The algorithm may terminate
even if min(∼=I) has infinitely many regions. However, there are cases when
minR(∼=I) has finitely many regions, and yet, the algorithm may execute forever.
While the output does not depend upon the strategy used to choose between
searching and splitting, the final partition ∼=, and the number of iterations before
termination, depend on the strategy.

Exercise 4.15 {P3} [Computing minimal-reachable quotient] Consider a sym-
bolic transition graph with four boolean variables x, y, z, and w. The ini-
tial predicate is x = true ∧ y = false . The transition predicate is (w′ =
x) ∧ (x′ = ¬y) ∧ (y′ = w ∨ z). The initial partition contains two regions
[[x ∨ y]] and [[¬x ∧ ¬y]]. Compute the minimal-reachable quotient by executing
Algorithm 4.4. How many regions does the output have?

Exercise 4.16 {T2} [Worst-case scenario for computing minimal-reachable quo-
tient] Consider the symbolic transition graph shown in Figure 4.7. The graph

Graph Minimization 20

has two variables, the location variable pc that ranges over the set {0 . . . 10},
and a variable x that ranges over {0 . . . 31}. The transitions are as shown. The
assignments require that the updated value lies in the range {0 . . . 31} (e.g., the
assignment x := x+1 stands for the guarded assignment x < 31 → x := x+1).
The initial predicate is pc = 0 ∧ x = 0. The initial partition ∼=I contains one
region [[pc = i]] per location 0 ≤ i ≤ 10. How many regions does a ∼=I -minimal-
reachable quotient have? Consider an execution of Algorithm 4.4, where split-
ting is preferred over searching. Show that, upon termination, for every value
0 ≤ i ≤ 31 of x, the partition ∼= contains the singleton region pc = 0 ∧ x = i.

Lee-Yannakakis algorithm

The Lee-Yannakakis algorithm for constructing the minimal-reachable quotient
modifies Algorithm 4.4 by imposing a deterministic strategy for searching and
splitting. The algorithm is shown in Figure 4.8. The type of a graph partition
is partition, and it supports insertion (Insert), deletion (Delete), enumeration
(foreach), and the mapping Find .

Each iteration of the outer repeat-loop in Algorithm 4.5 consists of a searching
phase, followed by the splitting phase. Search is performed until no more regions
can be found reachable, thus, search has a priority over splitting.

As in Algorithm 4.4 the set σR contains reachable states, at most one per region
of ∼=. In the searching phase, the algorithm constructs the reachable regions ∼=R

by exploring the successors of states in σR. The set E contains the edges between
the reachable regions. The search is performed in a depth first manner using
the stack U .

The computation of the algorithm can be understood from the illustration of
Figure 4.9. The partition contains 7 regions σ0, . . . σ6. The regions σ0, σ1, σ4

and σ5 are found to be reachable in the searching phase. Each reachable region
has a unique representative state in σR, for example, state s0 for region σ0. The
reachability information is computed by considering the initial regions and by
exploring successors of the representatives. Thus, at the end of the searching
phase, we are guaranteed that the regions σ2, σ3 and σ6 contain neither initial
states nor successors of the representative states of the reachable regions.

In the splitting phase, the algorithm computes, for each reachable region σ, the
subregion σ′ that is stable with respect to the partition ∼=prev , and contains the
reachable state σR ∩ σ. Instead of splitting σ with respect to each region of
∼=prev , σ is split in at most two regions to avoid proliferation of regions.

To understand the splitting, reconsider the illustration of Figure 4.9. For the
region σ0, the algorithm computes the subregion σ′

0 (shown by the dotted lines)
that contains states that agree with the representative s0: for every state t in
σ′

0, post(t) intersects with σ1 and σ4, and does not intersect with σ0, σ2, σ3, σ5

Graph Minimization 21

Algorithm 4.5 [Lee-Yannakakis Algorithm]

Input: a transition graph G = (Σ, σI ,→) and a G-partition ∼=I .
Output: the answer to the reachable-partition-refinement problem

(G,∼=I).

local ∼=,∼=prev : partition; σR, σ, τ, υ, σ′: region; E: set of

region×region; s, t: state, U : stack of state
∼=:=∼=I ; σR := EmptySet
foreach σ in ∼=I do

if σ ∩ InitQueue(G) 6= ∅ then

Insert(Element(σ ∩ InitQueue(G)), σR) fi od

repeat

Search:
U := EmptyStack ; E := EmptySet ; ∼=R := EmptySet
foreach s in σR do

U := Push(s, U); ∼=R:= Insert(Find(s,∼=),∼=R) od

while not EmptySet(U) do

s := Top(U); U := Pop(U); σ := Find(s,∼=)
foreach t in PostQueue(s, G) do

τ := Find(t,∼=); E := Insert((σ, τ), E)
if not IsMember(τ,∼=R) then

σR := Insert(t, σR); U := Push(t, U);
∼=R:= Insert(τ,∼=R) fi

od

od

Split:
∼=prev :=∼=
foreach σ in ∼=R do

σ′ := σ; τ := PostQueue(σ, G)
foreach (σ, υ) in E do σ′ := σ′∩PreQueue(υ, G); τ := τ\υ od

σ′ := σ′\pre(τ)
if σ 6= σ′ then
∼=:= Insert(σ′, Insert(σ\σ′,Delete(σ,∼=)))
if σ\σ′ ∩ InitQueue(G) 6= ∅ then

σR := Insert(Element(σ\σ′), σR) fi fi

od

od

until ∼=prev =∼=
return ∼=R.

Figure 4.8: Lee-Yannakakis algorithm for partition refinement

Graph Minimization 22

σ4σ3 σ5 σ6

s0

σ0 σ1 σ2

σ′

0

Figure 4.9: Computation of Lee-Yannakakis Algorithm

and σ6. Clearly, σ′

0 is nonempty as it contains s0. Furthermore, σ′

0 is known
to be reachable with the representative state s0. If it differs from σ0, then σ0

is split at the boundary of σ′

0. If the split part σ0\σ
′

0 contains an initial state,
then it is declared reachable by choosing a representative state.

Lemma 4.5 [Stabilization in Lee-Yannakakis algorithm] Let ∼=prev be the value
of the partition at the beginning of the splitting phase during some iteration of
Algorithm 4.5. Let σ be a region in ∼=R, and let s be the unique state in σR ∩σ.
Then, the subregion σ′ computed at the end of the for-loop contains precisely
those states t such that t →G τ iff s →G τ for all τ in ∼=prev .

Exercise 4.17 {T3} [Stabilization in Lee-Yannakakis] Prove Lemma 4.5.

Once the subregion σ′ is computed, the region σ is split at the boundary of σ′.
The crucial aspect of the splitting strategy is that all regions are given a fair
chance, in a round-robin order, to split.

Exercise 4.18 {P2} [Computing minimal-reachable quotient by Lee-Yannakakis]
Execute Algorithm 4.5 on the input of Exercise 4.16. How many iterations are
required before termination?

Suppose the reachable stable partition minR(∼=I) has n regions. During the
execution of Algorithm 4.5, the number of regions that contain some reachable
state of G is bounded by n. The convergence is established by the following
lemma.

Lemma 4.6 [Convergence] At the end of an iteration of the repeat-loop of Al-
gorithm 4.5, the number of regions σ in ∼= with σ ∩ post∗G(σI) 6= ∅ either equals
the number of regions in minR(∼=I), or exceeds the number of regions τ in ∼=prev

with τ ∩ post∗G(σI) 6= ∅.

Graph Minimization 23

Proof. Let υ = post∗G(σI) be the reachable region of G. During the splitting
phase each region σ in ∼=R is split into two regions σ′ and σ\σ′ such that σ con-
tains a reachable state and is stable with respect to each τ in ∼=prev (Lemma 4.5).
There are two cases to consider.

Case 1: for some σ in ∼=R, σ\σ′ contains a state in υ. Then, the number of
regions in the new partition containing reachable states exceeds the number of
regions in the old partition containing reachable states.

Case 2: for all regions σ ∈∼=R, σ\σ′ does not contain a state in υ. Let ∼=′

R

be the set of regions σ′. We show that every region of the reachable stable
partition minR(∼=I) is contained in a region of ∼=′

R, and thus, the sets ∼=R, ∼=′

R,
and minR(∼=I) have the same cardinality.

First, we prove that every state in υ belongs to some σ′. We already know that,
for all σ in ∼=R, (σ\σ′) ∩ υ is empty. It suffices to show that for every region τ
in ∼=prev \ ∼=R, τ ∩ υ is empty. Consider a region τ in ∼=prev \ ∼=R. Whenever
a newly created region contains an initial state, one of its state is added to σR,
and hence, the region gets added to ∼=R. Hence, τ ∩ σI is empty. During the
searching phase, all successors of all the states in σR are explored, and hence,
τ ∩ post(σR) is empty. Since every σ′ in ∼=′

R is stable with respect to τ , and
contains a state in σR, it follows that τ ∩ post(σ′) is empty for all σ′ in ∼=′

R. It
follows that τ ∩ υ is empty.

For every σ′ in ∼=′

R, let σ′′ = σ′ ∩ υ. Consider two regions σ and τ in ∼=R. We
know that σ′ is stable with respect to τ . It follows that σ′′ is also stable with
respect to τ . Since σ′′ ⊆ υ, post(σ′′) ∩ τ = post(σ′′) ∩ τ ′′. It follows that σ′′ is
stable with respect to τ ′′. We conclude that the final output minR(∼=I) contains
as many regions as ∼=R.

The running time of the algorithm depends upon the time complexity of the
primitive operations on regions and partitions. If the number of successors of
a state in G is bounded by k, then each searching phase requires at most kn
operations. The number of operations during a splitting phase is bounded by
the number of regions in ∼=R and the number of edges in E. If the number of
edges in the minimal-reachable quotient is m, then the size of E is bounded
by m, and the splitting phase requires at most m + n primitive operations. If
min(∼=I) has ` equivalence classes then Algorithm 4.5 is guaranteed to terminate
after ` iterations.

Exercise 4.19 {T3} [Optimization of Lee-Yannakakis algorithm] The search-
ing phase of Algorithm 4.5 builds the graph (∼=R, E) from scratch in each itera-
tion. Suggest a modification so that the computation of one iteration is reused
in the next.

Graph Minimization 24

σ0

τ0

σ1

τ1

Figure 4.10: Reachable semistable quotient

Early termination

Lemma 4.6 ensures that the size of ∼=R does not change after n iterations.
Indeed, the graphs (∼=R, E) computed in searching phases are isomorphic after
the n-th iteration. The splitting phase only removes subregions from each of
the regions in ∼=R without influencing the structure of the graph.

Reachable semistable quotient

Let G be a transition graph and let ∼=I be a G-partition. The pair (∼=, E),
for a set ∼= of regions of G and a set E ⊆∼= × ∼= of edges between the regions
of ∼=, is a reachable ∼=I -semistable quotient of G if (1) every region σ of the
reachable stable partition minR(∼=I) is contained in a region f(σ) of ∼=, and
(2) for two regions σ and τ of the reachable stable partition minR(∼=I),
σ →min(∼=I) τ iff (f(σ), f(τ)) ∈ E.

To understand the definition consider Figure 4.10 which shows a transition of
a reachable semistable quotient of a transition graph G. Each region τi of
a reachable semistable quotient contains a nonempty region σi that contains
reachable states of G (the union of all σi equals the reachable region of G). The
definition requires the transition from τ0 to τ1 to be stable with respect to the
reachable subregions σi: from every state s in σ0, postG(s) ∩ σ1 is nonempty.
However, there may be a state s ∈ τ0\σ0 such that postG(s) ∩ τ1 is empty.

Example 4.6 [Semistable quotient] Consider the symbolic graph G with an
integer variable x and a variable y that ranges over the interval [0, 1] of real
numbers. The initial predicate is x = 0 ∧ y = 0, and the transition predicate is

(x′ = x + 1) ∧ (2y ≤ 1 → y′ = 2y).

The initial partition ∼=I contains the single region with all the states. In this
case, min(∼=I) has infinitely many regions. The reachable region is [[y = 0]],
and contains infinitely many states. However, the minimal-reachable quotient
is finite: for σ = [[y = 0]], the graph with the single state σ, and the single
transition from σ to σ, is the minimal-reachable-quotient. There are infinitely
many reachable semistable quotients. Executing Algorithm 4.5 for i iterations

Graph Minimization 25

yields the semistable quotient that contains a single region [[y = 1/2i]] with a
single self-loop.

It follows that for a given transition graph and an initial partition, the cor-
responding reachable semistable partition is not uniquely defined. Two such
reachable semistable partitions are isomorphic graphs. To solve a reachabil-
ity problem for the transition graphs, it suffices to construct any reachable
semistable quotient with respect to a suitably chosen initial partition.

Proposition 4.3 [Reachability and semistable quotients] Let G be a transition
graph, ∼=I be a G-partition, and σ be a block of ∼=I . If (∼=, E) is a reachable
∼=I -semistable quotient of G, then the answer to the reachability problem (G, σ)
is Yes iff σ ∩ τ is nonempty for some τ in ∼=.

The Lee-Yannakakis algorithm is guaranteed to compute a reachable semistable
quotient after linearly many iterations.

Theorem 4.7 [Computation of semistable partition] Given an instance (G,∼=I)
of reachable-partition-refinement, if the reachable stable partition minR(∼=I) has
n regions, the pair (∼=R, E) at the end of the n-th iteration of the repeat-loop of
Algorithm 4.5 is a reachable ∼=I -semistable quotient of G.

Exercise 4.20 {T3} [Convergence to semistable quotient] Modify the proof of
Lemma 4.6 to prove Theorem 4.7.

Since it suffices to compute a reachable semistable quotient to solve reachability
problems, the execution of Algorithm 4.5 can be aborted, if there is a procedure
that determines whether (∼=R, E) is a reachable semistable quotient. Observe
that deciding whether (∼=R, E) is a reachable semistable quotient is an easier
(static) problem compared to the dynamic problem of constructing one. While
there are no general algorithms for this purpose, specialized solutions can be
employed to exploit the structure of the update commands.

Exercise 4.21 {T4} [Cylinder-based refinement computation] Consider an in-
stance (P,∼=I) of the reachable-partition-refinement problem with the following
characteristics. The module P is a ruleset with a single enumerated variable x
and k real-valued variables Y . Thus, the state-space ΣP is the produce

�
x× � k .

A rational interval I is a convex subset of � with rational endpoints. A region
σ of P is convex if for all s and t in σ with s(x) = t(x), for all 0 ≤ δ ≤ 1, the
state u is also in σ, where u(pc) = s(pc) and u(y) = δ · s(y)+(1− δ) · t(y) for all
y ∈ Y . A region σ of P is a cylinder if there exist a value m ∈

�
x and intervals

Iy for variables y ∈ Y such that a state s of P belongs to σ iff s(x) = m and
s(y) ∈ Iy for y ∈ Y . Assume that the initial region σI

P is a cylinder, and every
region in the initial partition ∼=I is a cylinder. Furthermore, for every guarded

Graph Minimization 26

assignment γ in the update command of P , the guard pγ is a cylinder, and for

all y ∈ Y , ey′

γ is of the form az+b for some rational numbers a, b, and a variable
z ∈ Y .

(1) Show that if a region σ of P is a cylinder, then postP (σ) is a finite union of
cylinders, and preP (σ) is a finite union of cylinders. (2) Show that every region
in min(∼=I) is convex. (3) Show that every region in min(∼=I) is a cylinder. (4)
Show that the problem of checking whether (∼=, E) is a reachable ∼=I -semistable
quotient can be formulated as a linear programming problem. What is the
time-complexity of your test for semistability?

Graph Minimization 27

Appendix: Notation

Equivalences and partitions

A partition of a set A is a set of nonempty, pairwise disjoint subsets of A whose
union is A. There is a one-to-one correspondence between the equivalences on
A and the partitions of A. Given an equivalence ∼= on A and an element a ∈ A,
we write a/∼= for the ∼=-equivalence class {b ∈ A | b ∼= a} of a. The set A/∼=
of ∼=-equivalence classes is a partition of A. In this way, each partition of A
is induced by a unique equivalence on A. Therefore, whenever we refer to a
partition of A, we use a notation like A/∼=, which indicates the corresponding
equivalence. We also freely attribute properties and derivatives of equivalences
to partitions, and vice versa.

Let ∼= be an equivalence on A. The equivalence ∼= is finite if ∼= has finitely
many equivalence classes. A union of ∼=-equivalence classes is called a block
of ∼=. If ∼= is finite with n equivalence classes, then ∼= has 2n blocks. Given two
equivalences ∼=1 and ∼=2 on A, the equivalence ∼=1 refines the equivalence ∼=2,
written ∼=1�∼=2, if a ∼=1 b implies a ∼=2 b. If ∼=1 refines ∼=2, then every block of
∼=2 is a block of ∼=1. For a set E of equivalence relations on A, the join

⋃

∗

E
is the transitive closure of the union

⋃

E of the relations in E; the join
⋃

∗

E is
an equivalence on A. The refinement relation � is a complete lattice on the set
of equivalences on A. The least upper �-bound for a set E of equivalences on
A is the join

⋃

∗

E; the greatest lower �-bound for E is the intersection
⋂

E.

Exercise 4.22 {} [Partition theorems] Prove all claims made in the previous
paragraph.

Groups

A goup is a set A with a binary function ◦ : A2 7→ A, called the multiplication
operation, such that (1) ◦ is associative, (2) there exists an element that is
identity for ◦, and (3) every element of A has an inverse with respect to ◦.
Consider a group (A, ◦). A subgroup of A is a subset B ⊆ A such that (B, ◦) is a
group. For a subset B ⊆ A, the subgroup generated by B, denoted closure(B),
is the smallest subgroup of (A, ◦) that contains B. The elements in B are called
generators for the group closure(B).

